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Foreword

Turing's deep 1937 paper made it clear that G�odel's astonishing earlier

results on arithmetic undecidability related in a very natural way to a

class of computing automata, nonexistent at the time of Turing's paper,

but destined to appear only a few years later, subsequently to proliferate

as the ubiquitous stored-program computer of today. The appearance

of computers, and the involvement of a large scienti�c community in

elucidation of their properties and limitations, greatly enriched the line

of thought opened by Turing. Turing's distinction between computa-

tional problems was rawly binary: some were solvable by algorithms,

others not. Later work, of which an attractive part is elegantly devel-

oped in the present volume, re�ned this into a multiplicity of scales

of computational di�culty, which is still developing as a fundamental

theory of information and computation that plays much the same role

in computer science that classical thermodynamics plays in physics:

by de�ning the outer limits of the possible, it prevents designers of

algorithms from trying to create computational structures which prov-

ably do not exist. It is not surprising that such a thermodynamics of

information should be as rich in philosophical consequence as thermo-

dynamics itself.

This quantitative theory of description and computation, or Com-

putational Complexity Theory as it has come to be known, studies the

various kinds of resources required to describe and execute a computa-

tional process. Its most striking conclusion is that there exist computa-

tions and classes of computations having innocent-seeming de�nitions

but nevertheless requiring inordinate quantities of some computational

resource. Resources for which results of this kind have been established

include:
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(a) The mass of text required to describe an object;

(b) The volume of intermediate data which a computational process

would need to generate;

(c) The time for which such a process will need to execute, either

on a standard \serial" computer or on computational structures

unrestricted in the degree of parallelism which they can employ.

Of these three resource classes, the �rst is relatively static, and per-

tains to the fundamental question of object describability; the others

are dynamic since they relate to the resources required for a computa-

tion to execute. It is with the �rst kind of resource that this book is

concerned. The crucial fact here is that there exist symbolic objects

(i.e., texts) which are \algorithmically inexplicable," i.e., cannot be

speci�ed by any text shorter than themselves. Since texts of this sort

have the properties associated with the random sequences of classical

probability theory, the theory of describability developed in Part II of

the present work yields a very interesting new view of the notion of

randomness.

The �rst part of the book prepares in a most elegant, even playful,

style for what follows; and the text as a whole re
ects its author's won-

derful enthusiasm for profundity and simplicity of thought in subject

areas ranging over philosophy, computer technology, and mathematics.

J. T. Schwartz

Courant Institute

February, 1987



Preface

The aim of this book is to present the strongest possible version of

G�odel's incompleteness theorem, using an information-theoretic ap-

proach based on the size of computer programs.

One half of the book is concerned with studying 
, the halting

probability of a universal computer if its program is chosen by tossing

a coin. The other half of the book is concerned with encoding 
 as

an algebraic equation in integers, a so-called exponential diophantine

equation.

G�odel's original proof of his incompleteness theorem is essentially

the assertion that one cannot always prove that a program will fail to

halt. This is equivalent to asking whether it ever produces any output.

He then converts this into an arithmetical assertion. Over the years this

has been improved; it follows from the work on Hilbert's 10th problem

that G�odel's theorem is equivalent to the assertion that one cannot

always prove that a diophantine equation has no solutions if this is the

case.

In our approach to incompleteness, we shall ask whether or not

a program produces an in�nite amount of output rather than asking

whether it produces any; this is equivalent to asking whether or not

a diophantine equation has in�nitely many solutions instead of asking

whether or not it is solvable.

If one asks whether or not a diophantine equation has a solution

for N di�erent values of a parameter, the N di�erent answers to this

question are not independent; in fact, they are only log2N bits of in-

formation. But if one asks whether or not there are in�nitely many

solutions for N di�erent values of a parameter, then there are indeed

cases in which the N di�erent answers to these questions are inde-
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pendent mathematical facts, so that knowing one answer is no help in

knowing any of the others. The equation encoding 
 has this property.

When mathematicians can't understand something they usually as-

sume that it is their fault, but it may just be that there is no pattern

or law to be discovered!

How to read this book: This entire monograph is essentially a proof

of one theorem, Theorem D in Chapter 8. The exposition is completely

self-contained, but the collection Chaitin (1987c) is a useful source

of background material. While the reader is assumed to be familiar

with the basic concepts of recursive function or computability theory

and probability theory, at a level easily acquired from Davis (1965)

and Feller (1970), we make no use of individual results from these

�elds that we do not reformulate and prove here. Familiarity with

LISP programming is helpful but not necessary, because we give a self-

contained exposition of the unusual version of pure LISP that we use,

including a listing of an interpreter. For discussions of the history

and signi�cance of metamathematics, see Davis (1978), Webb (1980),

Tymoczko (1986), and Rucker (1987).

Although the ideas in this book are not easy, we have tried to present

the material in the most concrete and direct fashion possible. We give

many examples, and computer programs for key algorithms. In partic-

ular, the theory of program-size in LISP presented in Chapter 5 and

Appendix B, which has not appeared elsewhere, is intended as an illus-

tration of the more abstract ideas in the following chapters.
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Chapter 1

Introduction

More than half a century has passed since the famous papers G�odel

(1931) and Turing (1937) that shed so much light on the foundations

of mathematics, and that simultaneously promulgated mathematical

formalisms for specifying algorithms, in one case via primitive recursive

function de�nitions, and in the other case via Turing machines. The

development of computer hardware and software technology during this

period has been phenomenal, and as a result we now know much better

how to do the high-level functional programming of G�odel, and how

to do the low-level machine language programming found in Turing's

paper. And we can actually run our programs on machines and debug

them, which G�odel and Turing could not do.

I believe that the best way to actually program a universal Turing

machine is John McCarthy's universal function EVAL. In 1960 Mc-

Carthy proposed LISP as a new mathematical foundation for the the-

ory of computation [McCarthy (1960)]. But by a quirk of fate LISP

has largely been ignored by theoreticians and has instead become the

standard programming language for work on arti�cial intelligence. I

believe that pure LISP is in precisely the same role in computational

mathematics that set theory is in theoretical mathematics, in that it

provides a beautifully elegant and extremely powerful formalism which

enables concepts such as that of numbers and functions to be de�ned

from a handful of more primitive notions.

Simultaneously there have been profound theoretical advances.

G�odel and Turing's fundamental undecidable proposition, the question

13



14 CHAPTER 1. INTRODUCTION

of whether an algorithm ever halts, is equivalent to the question of

whether it ever produces any output. In this monograph we will show

that much more devastating undecidable propositions arise if one asks

whether an algorithm produces an in�nite amount of output or not.1

G�odel expended much e�ort to express his undecidable proposition

as an arithmetical fact. Here too there has been considerable progress.

In my opinion the most beautiful proof is the recent one of Jones and

Matijasevi�c (1984), based on three simple ideas:

(1) the observation that 110 = 1, 111 = 11, 112 = 121, 113 = 1331,

114 = 14641 reproduces Pascal's triangle, makes it possible to

express binomial coe�cients as the digits of powers of 11 written

in high enough bases,

(2) an appreciation of �E. Lucas's remarkable hundred-year-old theo-

rem that the binomial coe�cient \n choose k" is odd if and only if

each bit in the base-two numeral for k implies the corresponding

bit in the base-two numeral for n,

(3) the idea of using register machines rather than Turing machines,

and of encoding computational histories via variables which are

vectors giving the contents of a register as a function of time.

Their work gives a simple straightforward proof, using almost no num-

ber theory, that there is an exponential diophantine equation with one

parameter p which has a solution if and only if the pth computer pro-

gram (i.e., the program with G�odel number p) ever halts.

Similarly, one can use their method to arithmetize my undecidable

proposition. The result is an exponential diophantine equation with

the parameter n and the property that it has in�nitely many solutions

if and only if the nth bit of 
 is a 1. Here 
 is the halting probability

of a universal Turing machine if an n-bit program has measure 2�n

[Chaitin (1975b,1982b)]. 
 is an algorithmically random real number

in the sense that the �rst N bits of the base-two expansion of 
 cannot

be compressed into a program shorter than N bits, from which it follows

that the successive bits of 
 cannot be distinguished from the result of

independent tosses of a fair coin. We will also show in this monograph

1These results are drawn from Chaitin (1986,1987b).
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that an N -bit program cannot calculate the positions and values of

more than N scattered bits of 
, not just the �rst N bits.2 This implies

that there are exponential diophantine equations with one parameter

n which have the property that no formal axiomatic theory can enable

one to settle whether the number of solutions of the equation is �nite

or in�nite for more than a �nite number of values of the parameter n.

What is gained by asking if there are in�nitely many solutions rather

than whether or not a solution exists? The question of whether or

not an exponential diophantine equation has a solution is in general

undecidable, but the answers to such questions are not independent.

Indeed, if one considers such an equation with one parameter k, and

asks whether or not there is a solution for k = 0; 1; 2; : : : ; N � 1, the

N answers to these N questions really only constitute log2N bits of

information. The reason for this is that we can in principle determine

which equations have a solution if we know how many of them are

solvable, for the set of solutions and of solvable equations is recursively

enumerable (r.e.). On the other hand, if we ask whether the number

of solutions is �nite or in�nite, then the answers can be independent,

if the equation is constructed properly.

In view of the philosophical impact of exhibiting an algebraic equa-

tion with the property that the number of solutions jumps from �nite

to in�nite at random as a parameter is varied, I have taken the trouble

of explicitly carrying out the construction outlined by Jones and Mati-

jasevi�c. That is to say, I have encoded the halting probability 
 into an

exponential diophantine equation. To be able to actually do this, one

has to start with a program for calculating 
, and the only language I

can think of in which actually writing such a program would not be an

excruciating task is pure LISP.

It is in fact necessary to go beyond the ideas of McCarthy in three

fundamental ways:

(1) First of all, we simplify LISP by only allowing atoms to be one

character long. (This is similar to McCarthy's \linear LISP.")

(2) Secondly, EVAL must not lose control by going into an in�nite

loop. In other words, we need a safe EVAL that can execute

2This theorem was originally established in Chaitin (1987b).
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garbage for a limited amount of time, and always results in an

error message or a valid value of an expression. This is similar

to the notion in modern operating systems that the supervisor

should be able to give a user task a time slice of CPU, and that

the supervisor should not abort if the user task has an abnormal

error termination.

(3) Lastly, in order to program such a safe time-limited EVAL, it

greatly simpli�es matters if we stipulate \permissive" LISP se-

mantics with the property that the only way a syntactically valid

LISP expression can fail to have a value is if it loops forever.

Thus, for example, the head (CAR) and tail (CDR) of an atom

is de�ned to be the atom itself, and the value of an unbound

variable is the variable.

Proceeding in this spirit, we have de�ned a class of abstract com-

puters which, as in Jones and Matijasevi�c's treatment, are register ma-

chines. However, our machine's �nite set of registers each contain a

LISP S-expression in the form of a character string with balanced left

and right parentheses to delimit the list structure. And we use a small

set of machine instructions, instructions for testing, moving, erasing,

and setting one character at a time. In order to be able to use subrou-

tines more e�ectively, we have also added an instruction for jumping

to a subroutine after putting into a register the return address, and an

indirect branch instruction for returning to the address contained in a

register. The complete register machine program for a safe time-limited

LISP universal function (interpreter) EVAL is about 300 instructions

long.

To test this LISP interpreter written for an abstract machine, we

have written in 370 machine language a register machine simulator.

We have also re-written this LISP interpreter directly in 370 machine

language, representing LISP S-expressions by binary trees of pointers

rather than as character strings, in the standard manner used in prac-

tical LISP implementations. We have then run a large suite of tests

through the very slow interpreter on the simulated register machine,

and also through the extremely fast 370 machine language interpreter,

in order to make sure that identical results are produced by both im-

plementations of the LISP interpreter.
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Our version of pure LISP also has the property that in it we can

write a short program to calculate 
 in the limit from below. The

program for calculating 
 is only a few pages long, and by running it (on

the 370 directly, not on the register machine!), we have obtained a lower

bound of 127/128ths for the particular de�nition of 
 we have chosen,

which depends on our choice of a self-delimiting universal computer.

The �nal step was to write a compiler that compiles a register ma-

chine program into an exponential diophantine equation. This compiler

consists of about 700 lines of code in a very nice and easy to use pro-

gramming language invented by Mike Cowlishaw called REXX. REXX

is a pattern-matching string processing language which is implemented

by means of a very e�cient interpreter.3 It takes the compiler only a

few minutes to convert the 300-line LISP interpreter into a 900,000-

character 17,000-variable universal exponential diophantine equation.

The resulting equation is a little large, but the ideas used to produce it

are simple and few, and the equation results from the straightforward

application of these ideas.

Here we shall present the details of this adventure, but not the full

equation.4 My hope is that this monograph will convince mathemati-

cians that randomness and unpredictability not only occur in nonlin-

ear dynamics and quantum mechanics, but even in rather elementary

branches of number theory.

In summary, the aim of this book is to construct a single equa-

tion involving only addition, multiplication, and exponentiation of non-

negative integer constants and variables with the following remarkable

property. One of the variables is considered to be a parameter. Take

the parameter to be 0,1,2,: : : obtaining an in�nite series of equations

from the original one. Consider the question of whether each of the

derived equations has �nitely or in�nitely many non-negative integer

solutions. The original equation is constructed in such a manner that

the answers to these questions about the derived equations mimic coin

tosses and are an in�nite series of independent mathematical facts, i.e.,

irreducible mathematical information that cannot be compressed into

3See Cowlishaw (1985) and O'Hara and Gomberg (1985).
4The full equation is available from the author: \The Complete Arithmetization

of EVAL," November 19th, 1987, 294 pp.
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any �nite set of axioms. In other words, it is essentially the case that

the only way to prove such assertions is by assuming them as axioms.

To produce this equation, we start with a universal Turing machine

in the form of the LISP universal function EVAL written as a register

machine program about 300 lines long. Then we \compile" this register

machine program into a universal exponential diophantine equation.

The resulting equation is about 900,000 characters long and has about

17,000 variables. Finally, we substitute for the program variable in

the universal diophantine equation the binary representation of a LISP

program for 
, the halting probability of a universal Turing machine if

n-bit programs have measure 2�n.



Part I

Formalisms for Computation:

Register Machines,

Exponential Diophantine

Equations, & Pure LISP
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In Part I of this monograph, we do the bulk of the preparatory

work that enables us in Part II to exhibit an exponential diophantine

equation that encodes the successive bits of the halting probability 
.

In Chapter 2 we present a method for compiling register machine

programs into exponential diophantine equations. In Chapter 3 we

present a stripped-down version of pure LISP. And in Chapter 4 we

present a register machine interpreter for this LISP, and then compile

it into a diophantine equation. The resulting equation, which unfortu-

nately is too large to exhibit here in its entirety, has a solution, and

only one, if the binary representation of a LISP expression that halts,

i.e., that has a value, is substituted for a distinguished variable in it. It

has no solution if the number substituted is the binary representation

of a LISP expression without a value.

Having dealt with programming issues, we can then proceed in Part

II to theoretical matters.
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Chapter 2

The Arithmetization of

Register Machines

2.1 Introduction

In this chapter we present the beautiful work of Jones and Matija-

sevi�c (1984), which is the culmination of a half century of development

starting with G�odel (1931), and in which the paper of Davis, Put-

nam, and Robinson (1961) on Hilbert's tenth problem was such a

notable milestone. The aim of this work is to encode computations

arithmetically. As G�odel showed with his technique of G�odel num-

bering and primitive recursive functions, the metamathematical asser-

tion that a particular proposition follows by certain rules of inference

from a particular set of axioms, can be encoded as an arithmetical or

number theoretic proposition. This shows that number theory well de-

serves its reputation as one of the hardest branches of mathematics, for

any formalized mathematical assertion can be encoded as a statement

about positive integers. And the work of Davis, Putnam, Robinson,

and Matijasevi�c has shown that any computation can be encoded as

a polynomial. The proof of this assertion, which shows that Hilbert's

tenth problem is unsolvable, has been simpli�ed over the years, but it

is still fairly intricate and involves a certain amount of number theory;

for a review see Davis, Matijasevi�c, and Robinson (1976).

23
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Formulas for primes: An illustration of the power and importance

of these ideas is the fact that a trivial corollary of this work has been

the construction of polynomials which generate or represent the set of

primes; Jones et al. (1976) have performed the extra work to actu-

ally exhibit manageable polynomials having this property. This result,

which would surely have amazed Fermat, Euler, and Gauss, actually

has nothing to do with the primes, as it applies to any set of positive

integers that can be generated by a computer program, that is, to any

recursively enumerable set.

The recent proof of Jones and Matijasevi�c that any computation can

be encoded in an exponential diophantine equation is quite remarkable.

Their result is weaker in some ways, and stronger in others: the theorem

deals with exponential diophantine equations rather than polynomial

diophantine equations, but on the other hand diophantine equations

are constructed which have unique solutions. But the most remarkable

aspect of their proof is its directness and straightforwardness, and the

fact that it involves almost no number theory! Indeed their proof is

based on a curious property of the evenness or oddness of binomial

coe�cients, which follows immediately by considering Pascal's famous

triangle of these coe�cients.

In summary, I believe that the work on Hilbert's tenth problem

stemming from G�odel is among the most important mathematics of

this century, for it shows that all of mathematics, once formalized, is

mirrored in properties of the whole numbers. And the proof of this

fact, thanks to Jones and Matijasevi�c, is now within the reach of any-

one. Their 1984 paper is only a few pages long; here we shall devote

the better part of a hundred pages to a di�erent proof, and one that is

completely self-contained. While the basic mathematical ideas are the

same, the programming is completely di�erent, and we give many ex-

amples and actually exhibit the enormous diophantine equations that

arise. Jones and Matijasevi�c make no use of LISP, which plays a central

role here.

Let us now give a precise statement of the result which we shall

prove. A predicate P (a1; : : : ; an) is said to be recursively enumerable

(r.e.) if there is an algorithm which given the non-negative integers

a1; : : : ; an will eventually discover that these numbers have the prop-

erty P , if that is the case. This is weaker than the assertion that
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P is recursive, which means that there is an algorithm which will

eventually discover that P is true or that it is false; P is recursive

if and only if P and not P are both r.e. predicates. Consider func-

tions L(a1; : : : ; an; x1; : : : ; xm) and R(a1; : : : ; an; x1; : : : ; xm) built up

from the non-negative integer variables a1; : : : ; an; x1; : : : ; xm and from

non-negative integer constants by using only the operations of addition

A + B, multiplication A � B, and exponentiation AB. The predicate

P (a1; : : : ; an) is said to be exponential diophantine if P (a1; : : : ; an) holds

if and only if there exist non-negative integers x1; : : : ; xm such that

L(a1; : : : ; an; x1; : : : ; xm) = R(a1; : : : ; an; x1; : : : ; xm):

Moreover, the exponential diophantine representation L = R of P is

said to be singlefold if P (a1; : : : ; an) implies that there is a unique m-

tuple of non-negative integers x1; : : : ; xm such that

L(a1; : : : ; an; x1; : : : ; xm) = R(a1; : : : ; an; x1; : : : ; xm)

Here the variables a1; : : : ; an are referred to as parameters, and the

variables x1; : : : ; xm are referred to as unknowns.

The most familiar example of an exponential diophantine equation

is Fermat's so-called \last theorem." This is the famous conjecture that

the equation

(x+ 1)n+3 + (y + 1)n+3 = (z + 1)n+3

has no solution in non-negative integers x; y; z and n. The reason that

exponential diophantine equations as we de�ne them have both a left-

hand side and a right-hand side, is that we permit neither negative

numbers nor subtraction. Thus it is not possible to collect all terms on

one side of the equation.

The theorem of Jones and Matijasevi�c (1984) states that a pred-

icate is exponential diophantine if and only if it is r.e., and moreover, if

a predicate is exponential diophantine, then it admits a singlefold ex-

ponential diophantine representation. That a predicate is exponential

diophantine if and only if it is r.e. was �rst shown by Davis, Putnam,

and Robinson (1961), but their proof is much more complicated and

does not yield singlefold representations. It is known that the use of
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0: 1

1: 1 1

2: 1 2 1

3: 1 3 3 1

4: 1 4 6 4 1

5: 1 5 10 10 5 1

6: 1 6 15 20 15 6 1

7: 1 7 21 35 35 21 7 1

8: 1 8 28 56 70 56 28 8 1

9: 1 9 36 84 126 126 84 36 9 1

10: 1 10 45 120 210 252 210 120 45 10 1

11: 1 11 55 165 330 462 462 330 165 55 11 1

12: 1 12 66 220 495 792 924 792 495 220 66 12 1

13: 1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1

14: 1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1

15: 1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1

16: 1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1

Figure 2.1: Pascal's Triangle.

the exponential function AB can be omitted, i.e., a predicate is in fact

polynomial diophantine if and only if it is r.e., but it is not known

whether singlefold representations are always possible without using

exponentiation. Since singlefoldness is important in our applications of

these results, and since the proof is so simple, it is most natural for us

to use here the work on exponential diophantine representations rather

than that on polynomial diophantine representations.

2.2 Pascal's Triangle Mod 2

Figure 2.1 shows Pascal's triangle up to

(x+ y)16 =
16X
k=0

 
16

k

!
xky16�k:

This table was calculated by using the formula

 
n+ 1

k + 1

!
=

 
n

k + 1

!
+

 
n

k

!
:

That is to say, each entry is the sum of two entries in the row above it:

the entry in the same column, and the one in the column just to left.
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(This rule assumes that entries which are not explicitly shown in this

table are all zero.)

Now let's replace each entry by a 0 if it is even, and let's replace

it by a 1 if it is odd. That is to say, we retain only the rightmost bit

in the base-two representation of each entry in the table in Figure 2.1.

This gives us the table in Figure 2.2.

Figure 2.2 shows Pascal's triangle mod 2 up to (x+y)64. This table

was calculated by using the formula

 
n+ 1

k + 1

!
�
 

n

k + 1

!
+

 
n

k

!
(mod 2):

That is to say, each entry is the base-two sum without carry (the \EX-

CLUSIVE OR") of two entries in the row above it: the entry in the

same column, and the one in the column just to left.

Erasing 0's makes it easier for one to appreciate the remarkable

pattern in Figure 2.2. This gives us the table in Figure 2.3.

Note that moving one row down the table in Figure 2.3 corresponds

to taking the EXCLUSIVE OR of the original row with a copy of it

that has been shifted right one place. More generally, moving down

the table 2n rows corresponds to taking the EXCLUSIVE OR of the

original row with a copy of it that has been shifted right 2n places. This

is easily proved by induction on n.

Consider the coe�cients of xk in the expansion of (1 + x)42. Some

are even and some are odd. There are eight odd coe�cients: since 42 =

32 + 8 + 2, the coe�cients are odd for k = (0 or 32) + (0 or 8) + (0 or

2). (See the rows marked with an � in Figure 2.3.) Thus the coe�cient
of xk in (1 + x)42 is odd if and only if each bit in the base-two numeral

for k \implies" (i.e., is less than or equal to) the corresponding bit in

the base-two numeral for 42. More generally, the coe�cient of xk in

(1 + x)n is odd if and only if each bit in the base-two numeral for k

implies the corresponding bit in the base-two numeral for n.

Let us write r ) s if each bit in the base-two numeral for the non-

negative integer r implies the corresponding bit in the base-two numeral

for the non-negative integer s. We have seen that r ) s if and only if

the binomial coe�cient
�
s

r

�
of xr in (1 + x)s is odd. Let us express this

as an exponential diophantine predicate.
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0: 1

1: 11

2: 101

3: 1111

4: 10001

5: 110011

6: 1010101

7: 11111111

8: 100000001

9: 1100000011

10: 10100000101

11: 111100001111

12: 1000100010001

13: 11001100110011

14: 101010101010101

15: 1111111111111111

16: 10000000000000001

17: 110000000000000011

18: 1010000000000000101

19: 11110000000000001111

20: 100010000000000010001

21: 1100110000000000110011

22: 10101010000000001010101

23: 111111110000000011111111

24: 1000000010000000100000001

25: 11000000110000001100000011

26: 101000001010000010100000101

27: 1111000011110000111100001111

28: 10001000100010001000100010001

29: 110011001100110011001100110011

30: 1010101010101010101010101010101

31: 11111111111111111111111111111111

32: 100000000000000000000000000000001

33: 1100000000000000000000000000000011

34: 10100000000000000000000000000000101

35: 111100000000000000000000000000001111

36: 1000100000000000000000000000000010001

37: 11001100000000000000000000000000110011

38: 101010100000000000000000000000001010101

39: 1111111100000000000000000000000011111111

40: 10000000100000000000000000000000100000001

41: 110000001100000000000000000000001100000011

42: 1010000010100000000000000000000010100000101

43: 11110000111100000000000000000000111100001111

44: 100010001000100000000000000000001000100010001

45: 1100110011001100000000000000000011001100110011

46: 10101010101010100000000000000000101010101010101

47: 111111111111111100000000000000001111111111111111

48: 1000000000000000100000000000000010000000000000001

49: 11000000000000001100000000000000110000000000000011

50: 101000000000000010100000000000001010000000000000101

51: 1111000000000000111100000000000011110000000000001111

52: 10001000000000001000100000000000100010000000000010001

53: 110011000000000011001100000000001100110000000000110011

54: 1010101000000000101010100000000010101010000000001010101

55: 11111111000000001111111100000000111111110000000011111111

56: 100000001000000010000000100000001000000010000000100000001

57: 1100000011000000110000001100000011000000110000001100000011

58: 10100000101000001010000010100000101000001010000010100000101

59: 111100001111000011110000111100001111000011110000111100001111

60: 1000100010001000100010001000100010001000100010001000100010001

61: 11001100110011001100110011001100110011001100110011001100110011

62: 101010101010101010101010101010101010101010101010101010101010101

63: 1111111111111111111111111111111111111111111111111111111111111111

64: 10000000000000000000000000000000000000000000000000000000000000001

Figure 2.2: Pascal's Triangle Mod 2.
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0: 1

1: 11

2: 1 1

3: 1111

4: 1 1

5: 11 11

6: 1 1 1 1

7: 11111111

8: 1 1

9: 11 11

10: 1 1 1 1

11: 1111 1111

12: 1 1 1 1

13: 11 11 11 11

14: 1 1 1 1 1 1 1 1

15: 1111111111111111

16: 1 1

17: 11 11

18: 1 1 1 1

19: 1111 1111

20: 1 1 1 1

21: 11 11 11 11

22: 1 1 1 1 1 1 1 1

23: 11111111 11111111

24: 1 1 1 1

25: 11 11 11 11

26: 1 1 1 1 1 1 1 1

27: 1111 1111 1111 1111

28: 1 1 1 1 1 1 1 1

29: 11 11 11 11 11 11 11 11

30: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31: 11111111111111111111111111111111

*32: 1 1

33: 11 11

34: 1 1 1 1

35: 1111 1111

36: 1 1 1 1

37: 11 11 11 11

38: 1 1 1 1 1 1 1 1

39: 11111111 11111111

*40: 1 1 1 1

41: 11 11 11 11

*42: 1 1 1 1 1 1 1 1

43: 1111 1111 1111 1111

44: 1 1 1 1 1 1 1 1

45: 11 11 11 11 11 11 11 11

46: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

47: 1111111111111111 1111111111111111

48: 1 1 1 1

49: 11 11 11 11

50: 1 1 1 1 1 1 1 1

51: 1111 1111 1111 1111

52: 1 1 1 1 1 1 1 1

53: 11 11 11 11 11 11 11 11

54: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

55: 11111111 11111111 11111111 11111111

56: 1 1 1 1 1 1 1 1

57: 11 11 11 11 11 11 11 11

58: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

59: 1111 1111 1111 1111 1111 1111 1111 1111

60: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

61: 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

62: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

63: 1111111111111111111111111111111111111111111111111111111111111111

64: 1 1

Figure 2.3: Pascal's Triangle Mod 2 with 0's Replaced by

Blanks. Note the fractal pattern with many parts similar to the whole.

In fact, from a great distance this resembles the Sierpinski gasket de-

scribed in Mandelbrot (1982), pp. 131, 142, 329.
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We use the fact that the binomial coe�cients are the digits of the

number (1+ t)s written in base-t notation, if t is su�ciently large. For

example, in base-ten we have

110 = 1

111 = 11

112 = 121

113 = 1331

114 = 14641

but for 115 a carry occurs when adding 6 and 4 and things break down.

In fact, since the binomial coe�cients of order s add up to 2s, it is

su�cient to take t = 2s. Hence

r ) s i� u =

 
s

r

!
is odd i�

t = 2s

(1 + t)s = vtr+1 + utr + w

w < tr

u < t

u is odd.

Thus r) s if and only if there exist unique non-negative integers t, u,

v, w, x, y, z such that

t = 2s

(1 + t)s = vtr+1 + utr + w

w + x+ 1 = tr

u+ y + 1 = t

u = 2z + 1:

2.3 LISP Register Machines

Now let's look at register machines! These are machines which have a

�nite number of registers, each of which contains an arbitrarily large

non-negative integer, and which have programs consisting of a �nite

list of labeled instructions. (Real computing machines of course have

a large number of registers with �nite capacity, rather than a small

number of registers with in�nite capacity.) Each of the registers is

simultaneously considered to contain a LISP S-expression in the form
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of a �nite string of characters. Each 8 bits of the base-two numeral for

the contents of a register represent a particular character in the LISP

alphabet, and the character string is in the register in reverse order.

We reserve the 8-bit byte consisting entirely of 0's to mark the end of

a character string.1 Thus the rightmost 8 bits of a register are the �rst

character in the S-expression, and replacing the contents of a register

X by the integer part of the result of dividing it by 256 corresponds to

removing the �rst character of the string. Similarly, if Y is between 1

and 255, replacing X by 256X+Y corresponds to adding the character

Y at the beginning of the string X.

Figure 2.4 is a table giving all the register machine instructions.

These are the �fteen di�erent kinds of instructions permitted in register

machine language. Note that there are only eleven di�erent opcodes.

All instructions must be labeled.

LABEL: HALT

Halt execution.

LABEL: GOTO LABEL2

This is an unconditional branch to LABEL2. (Normally, execu-

tion 
ows from each instruction to the next in sequential order.)

LABEL: JUMP REGISTER LABEL2

Set REGISTER to \(NEXT_LABEL)" and go to LABEL2. Here

\(NEXT_LABEL)" denotes the LISP S-expression consisting of the

list of characters in the label of the next instruction in sequential

order. This instruction is used to jump to a subroutine and si-

multaneously save the return address (i.e., where execution will

resume after executing the subroutine) in a register.

LABEL: GOBACK REGISTER

Go to \(LABEL)" which is in REGISTER. This instruction is

used in conjunction with the JUMP instruction to return from a

subroutine. It is illegal if REGISTER does not contain the label

1It is not really necessary to have a reserved end-of-string character, but this

convention signi�cantly simpli�es the LISP interpreter that we present in Chapter

4.



32 CHAPTER 2. REGISTER MACHINES

L: HALT Halt.

L: GOTO L2 Unconditional branch to L2.

L: JUMP R L2 (label) of next instruction into R &

goto L2.

L: GOBACK R Goto (label) which is in R.

L: EQ R 0/255 L2 Compare the rightmost 8 bits of R

L: NEQ R R2 L2 with an 8-bit constant

or with the rightmost 8 bits of R2

& branch to L2 for equal/not equal.

L: RIGHT R Shift R right 8 bits.

L: LEFT R 0/255 Shift R left 8 bits & insert an 8-bit

R R2 constant or insert the rightmost

8 bits of R2. In the latter case,

then shift R2 right 8 bits.

L: SET R 0/255 Set the entire contents of R to be

R R2 equal to that of R2 or to an 8-bit

constant (extended to the left with

infinitely many 0's).

L: OUT R Write string in R.

L: DUMP Dump all registers.

Figure 2.4: Register Machine Instructions. We use non-zero 8-

bit bytes to represent a LISP character and we represent LISP S-

expressions as reversed character strings in binary. I.e., registers con-

tain LISP S-expressions with 8 bits per character and with the order

of the characters reversed. See Figure 3.1 for the bit strings for each

character. Thus the rightmost 8 bits of a register are the �rst character

in an S-expression. X  256X + Y (0 < Y < 256) corresponds to

adding the character Y to the beginning of an S-expression. X  the

integer part of X=256 corresponds to removing the �rst character of an

S-expression.
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of an instruction in the program between parentheses; i.e., the

program is invalid.

LABEL: EQ REGISTER1 CONSTANT LABEL2

Conditional branch: The rightmost 8 bits of REGISTER1 are

compared with an 8-bit CONSTANT. In other words, the �rst

character in REGISTER1, which is the remainder of REGIS-

TER1 divided by 256, is compared with a CONSTANT from

0 to 255. If they are equal, then execution continues at LABEL2.

If they are not equal, then execution continues with the next in-

struction in sequential order.

LABEL: EQ REGISTER1 REGISTER2 LABEL2

Conditional branch: The rightmost 8 bits of REGISTER1 are

compared with the rightmost 8 bits of REGISTER2. In other

words, the �rst character in REGISTER1, which is the remainder

of REGISTER1 divided by 256, is compared with the �rst char-

acter in REGISTER2, which is the remainder of REGISTER2

divided by 256. If they are equal, then execution continues at

LABEL2. If they are not equal, then execution continues with

the next instruction in sequential order.

LABEL: NEQ REGISTER1 CONSTANT LABEL2

Conditional branch: The rightmost 8 bits of REGISTER1 are

compared with an 8-bit CONSTANT. In other words, the �rst

character in REGISTER1, which is the remainder of REGIS-

TER1 divided by 256, is compared with a CONSTANT from

0 to 255. If they are not equal, then execution continues at LA-

BEL2. If they are equal, then execution continues with the next

instruction in sequential order.

LABEL: NEQ REGISTER1 REGISTER2 LABEL2

Conditional branch: The rightmost 8 bits of REGISTER1 are

compared with the rightmost 8 bits of REGISTER2. In other

words, the �rst character in REGISTER1, which is the remainder

of REGISTER1 divided by 256, is compared with the �rst char-

acter in REGISTER2, which is the remainder of REGISTER2

divided by 256. If they are not equal, then execution continues
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at LABEL2. If they are equal, then execution continues with the

next instruction in sequential order.

LABEL: RIGHT REGISTER

Shift REGISTER right 8 bits. I.e., the contents of REGISTER

is replaced by the integer part of REGISTER divided by 256. In

other words, the �rst character in the S-expression in REGISTER

is deleted.

LABEL: LEFT REGISTER1 CONSTANT

Shift REGISTER1 left 8 bits and add to it an 8-bit CONSTANT.

I.e., the contents of REGISTER1 is multiplied by 256, and then

a CONSTANT from 0 to 255 is added to it. In other words,

the character string in REGISTER now consists of the character

CONSTANT followed by the string of characters previously in

REGISTER.

LABEL: LEFT REGISTER1 REGISTER2

Shift REGISTER1 left 8 bits, add to it the rightmost 8 bits of

REGISTER2, and then shift REGISTER2 right 8 bits. I.e., the

contents of REGISTER1 is multiplied by 256, the remainder of

REGISTER2 divided by 256 is added to REGISTER1, and then

REGISTER2 is replaced by the integer part of REGISTER2 di-

vided by 256. In other words, the �rst character in REGISTER2

has been removed and added at the beginning of the character

string in REGISTER1.

LABEL: SET REGISTER1 CONSTANT

Set the entire contents of REGISTER1 to an 8-bit CONSTANT.

I.e., the contents of REGISTER1 is replaced by a CONSTANT

from 0 to 255. In other words, the previous contents of REGIS-

TER1 is discarded and replaced by a character string which is

either a single character or the empty string.

LABEL: SET REGISTER1 REGISTER2

Set the entire contents of REGISTER1 to that of REGISTER2.

I.e., the contents of REGISTER1 is replaced by the contents of
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L1: SET B X'00'

L2: LEFT B A

L3: NEQ A X'00' L2

L4: HALT

Figure 2.5: A Register Machine Program to Reverse a Charac-

ter String.

REGISTER2. In other words, the character string in REGIS-

TER1 is discarded and replaced by a copy of the character string

in REGISTER2.

LABEL: OUT REGISTER

The character string in REGISTER is written out (in the correct,

not the reversed, order!). This instruction is not really necessary;

it is used for debugging.

LABEL: DUMP

Each register's name and the character string that it contains are

written out (with the characters in the correct, not the reversed,

order!). This instruction is not really necessary; it is used for

debugging.

Here CONSTANT, which denotes an 8-bit constant, is usually writ-

ten as a single character enclosed in apostrophes preceded by a C, e.g.,

C 0A0, C 0B0, : : : The apostrophe itself must be doubled: C 0000 denotes

the 8-bit constant which represents a single apostrophe. And X 0000

denotes the 8-bit constant consisting entirely of 0's.

Figure 2.5 is an example of a register machine program. This pro-

gram reverses the character string initially in register A. The contents

of A is destroyed, the reversed string replaces the initial contents of

register B, and then the program halts. This program depends on the

fact that the byte consisting of 8 bits of 0's denotes the end of a char-

acter string and cannot occur inside a string. If register A starts with

the string \abc", the program will eventually stop with A empty and

with \cba" in register B.
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From this program we shall construct an exponential diophantine

equation with four parameters input.A, input.B, output.A, output.B

that has a solution if and only if this program halts with output.B in B

if it starts with input.A in A, that is to say, if and only if output.B is the

reversal of input.A. The solution, if it exists, is a kind of chronological

record of the entire history of a successful computation, i.e., one which

reaches a HALT instruction without executing an illegal GOBACK

after starting at the �rst instruction. Thus the solution, if it exists,

is unique, because computers are deterministic and a computational

history is uniquely determined by its input.

Note that if A initially contains \abc", a total of 8 instructions will

be executed: L1, L2, L3, L2, L3, L2, L3, L4.

Let's start by giving the solution we want the equation to have, and

then we shall construct an equation that forces this solution.

input :A = \abc"

is the initial contents of register A.

time = 8

is the total number of instructions executed.

number :of :instructions = 4

is the number of lines in the program.

The variable A encodes the contents of register A as a function of

time in the form of a base-q number in which the digit corresponding

to qt is the contents of A at time t. Similarly, the variable B encodes

the contents of register B as a function of time in the form of a base-q

number in which the digit corresponding to qt is the contents of B at

time t:
A = �;�; c; c; bc; bc; abc; abcq
B = cba; cba; ba; ba; a; a;�; input :Bq:

Here � denotes the empty string. More precisely, the rightmost digit

gives the initial contents, the next digit gives the contents after the �rst

instruction is executed, : : : and the leftmost digit gives the contents

after the next-to-the-last instruction is executed. (The last instruction
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executed must be HALT, which has no e�ect on the contents.) I.e., the

digit corresponding to qt (0 � t < time) gives the contents of a register

just before the (t + 1)-th instruction is executed. q must be chosen

large enough for everything to �t.

The base-q numbers L1; L2; L3; L4 encode the instruction being ex-

ecuted as a function of time; the digit corresponding to qt in LABEL

is a 1 if LABEL is executed at time t, and it is a 0 if LABEL is not

executed at time t.
L1 = 00000001q
L2 = 00101010q
L3 = 01010100q
L4 = 10000000q :

i is a base-q number consisting of time 1's:

i = 11111111q :

Now let's construct from the program in Figure 2.5 an equation

that forces this solution. This is rather like determining the boolean

algebra for the logical design of a CPU chip. number.of.instructions is

a constant, input.A, input.B, output.A, output.B are parameters, and

time, q, i, A, B, L1, L2, L3, L4, are unknowns (nine of them).

Let's choose a big enough base:

q = 256input:A+input:B+time+number :of :instructions:

This implies that number.of.instructions is less than q, and also that

the contents of registers A and B are both less than q throughout the

entire course of the computation. Now we can de�ne i:

1 + (q � 1)i = qtime:

This is the condition for starting execution at line L1:

1) L1:

This is the condition for ending execution at line L4 after executing

time instructions:

qtime�1 = L4:
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If there were several HALT instructions in the program, L4 would be

replaced by the sum of the corresponding LABEL's. The following

conditions express the fact that at any given time one and only one

instruction is being executed:

i = L1 + L2 + L3 + L4

L1) i

L2) i

L3) i

L4) i:

For these conditions to work, it is important that number.of.instructi-

ons, the number of lines in the program, be less than q, the base being

used.

Now let us turn our attention to the contents of registers A and B

as a function of time. First of all, the following conditions determine

the right 8 bits of A and 8-bit right shift of A as a function of time:

256shift :A) A

256shift :A) (q � 1� 255)i

A) 256shift :A+ 255i

A = 256shift :A+ char :A

The following conditions determine whether or not the �rst 8 bits of

register A are all 0's as a function of time:

eq:A:X 0000 ) i

256eq:A:X 0000 ) 256i � char :A

256i � char :A) 256eq:A:X 0000 + 255i

The following conditions determine when registers A and B are set,

and to what values, as a function of time:

set :B:L1 = 0

set :B:L2) 256B + char :A

set :B:L2) (q � 1)L2

256B + char :A) set :B:L2 + (q � 1)(i� L2)
set :A:L2) shift :A

set :A:L2) (q � 1)L2

shift :A) set :A:L2 + (q � 1)(i� L2)
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The following conditions determine the contents of registers A and B

when they are not set:

dont :set :A) A

dont :set :A) (q � 1)(i� L2)
A) dont :set :A+ (q � 1)L2

dont :set :B ) B

dont :set :B ) (q � 1)(i� L1 � L2)
B ) dont :set :B + (q � 1)(L1 + L2)

Finally, the following conditions determine the contents of registers A

and B as a function of time:

A) (q � 1)i

B ) (q � 1)i

A+ output :Aqtime = input :A+ q(set :A:L2 + dont :set :A)

B + output :Bqtime = input :B + q(set :B:L1 + set :B:L2 + dont :set :B)

We also need conditions to express the manner in which control


ows through the program, i.e., the sequence of execution of steps of

the program. This is done as follows. L1 always goes to L2:

qL1) L2

L2 always goes to L3:

qL2) L3

L3 either goes to L4 or to L2:

qL3) L4 + L2

If the right 8 bits of A are 0's then L3 does not go to L2:

qL3) L2 + q eq:A:X 0000

There is no condition for L4 because it doesn't go anywhere.

Above there are 8 equations and 29 )'s, in 4 parameters (input.A,

input.B, output.A, output.B) and 17 unknowns. Each condition L) R
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above is expanded into the following 7 equations in 9 variables:

r = L

s = R

t = 2s

(1 + t)s = vtr+1 + utr + w

w + x+ 1 = tr

u+ y + 1 = t

u = 2z + 1:

Each time this is done, the 9 variables r; s; t; u; v; w; x; y; z must be

renamed to unique variables in order to avoid a name clash. The result

is 8 + 7 � 29 = 211 equations in 4 parameters and 17 + 9 � 29 = 278

unknowns. Minus signs are eliminated by transposing terms to the

other side of the relevant equations r = L or s = R. Then all the

equations are combined into a single one by using the fact that

X
(Ai �Bi)

2 = 0 i� Ai = Bi:

Here again, negative terms must be transposed to the other side of the

composite equation. E.g., �ve equations can be combined into a single

equation by using the fact that if a; b; c; d; e; f; g; h; i; j are non-negative

integers, then

a = b; c = d; e = f; g = h; i = j

if and only if

(a� b)2 + (c� d)2 + (e� f)2 + (g � h)2 + (i� j)2 = 0;

that is, if and only if

a2 + b2 + c2 + d2 + e2 + f2 + g2 + h2 + i2 + j2

= 2ab+ 2cd + 2ef + 2gh + 2ij:

The result is a single (enormous!) exponential diophantine equation

which has one solution for each successful computational history, i.e.,

for each one that �nally halts. Thus we have obtained a singlefold

diophantine representation of the r.e. predicate \output.B is the char-

acter string reversal of input.A". The method that we have presented
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by working through this example is perfectly general: it applies to any

predicate for which one can write a register machine computer program.

In Chapter 4 we show that this is any r.e. predicate, by showing how

powerful register machines are.

The names of auxiliary variables that we introduce are in lower-

case with dots used for hyphenation, in order to avoid confusion with

the names of labels and registers, which by convention are always in

upper-case and use underscores for hyphenation.

Above, we encountered eq:A:X 0000. This is a somewhat special case;

the general case of comparison for equality is a little bit harder. These

are the conditions for eq:A:B, ge:A:B, and ge:B:A, which indicate

whether the rightmost 8 bits of registers A and B are equal, greater

than or equal, or less than or equal, respectively, as a function of time:

ge:A:B ) i

256ge:A:B) 256i + (char :A� char :B)

256i + (char :A� char :B)) 256ge:A:B + 255i

ge:B:A) i

256ge:B:A) 256i � (char :A� char :B)

256i � (char :A� char :B)) 256ge:B:A+ 255i

eq:A:B) i

2eq:A:B ) ge:A:B + ge:B:A

ge:A:B + ge:B:A) 2eq:A:B + i

Here we use the fact that the absolute value of the di�erence between

two characters cannot exceed 255.

As for JUMP's and GOBACK's, the corresponding conditions are

easily constructed using the above ideas, after introducing a variable ic

to represent the instruction counter. Our program for character string

reversal does not use JUMP or GOBACK, but if it did, the equation

de�ning the instruction counter vector would be:

ic = C 0(L1)0L1 + C 0(L2)0L2 + C 0(L3)0L3 + C 0(L4)0L4

Here C 0(L1)0 denotes the non-negative integer that represents the LISP

S-expression (L1), etc. Thus for the execution of this program that we

considered above,

ic = (L4); (L3); (L2); (L3); (L2); (L3); (L2); (L1)q
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I.e., the digit corresponding to qt in ic is a LISP S-expression for the

list of the characters in the label of the instruction that is executed at

time t. Note that if labels are very long, this may require the base q to

be chosen a little larger, to ensure that the list of characters in a label

always �ts into a single base-q digit.

It is amusing to look at the size of the variables in a solution of

these exponential diophantine equations. Rough estimates of the size

of solutions simultaneously serve to �x in the mind how the equations

work, and also to show just how very impractical they are. Here goes a

very rough estimate. The dominant term determining the base q that

is used is

q � 28time

where time is the total number of instructions executed during the

computation, i.e., the amount of time it takes for the register machine

to halt. This is because the LEFT instruction can increase the size

of a character string in a register by one 8-bit character per \machine

cycle", and q must be chosen so that the largest quantity that is ever

in a register during the computation can �t into a single base-q digit.

That's how big q is. How about the register variables? Well, they are

vectors giving a chronological history of the contents of a register (in

reverse order). I.e., each register variable is a vector of time elements,

each of which is (8time)-bits long, for a total of 8time2 bits altogether.

Thus

register variable � 28time2 :

And how about the variables that arise when )'s are expanded into

equations? Well, very roughly speaking, they can be of the order of 2

raised to a power which is itself a register variable! Thus

expansion variable � 22
8time

2

!!

Considering how little a LISP register machine accomplishes in one

step, non-trivial examples of computations will require on the order of

tens or hundreds of thousands of steps, i.e.,

time � 100;000:

For example, in Chapter 4 we shall consider a LISP interpreter and

its implementation via a 308-instruction register machine program. To
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APPEND two lists consisting of two atoms each, takes the LISP inter-

preter 238890 machine cycles, and to APPEND two lists consisting of

six atoms each, takes 1518834 machine cycles! This shows very clearly

that these equations are only of theoretical interest, and certainly not

a practical way of actually doing computations.

The register machine simulator that counted the number of ma-

chine cycles is written in 370 machine language. On the large 370

mainframe that I use, the elapsed time per million simulated register

machine cycles is usually from 1 to 5 seconds, depending on the load

on the machine. Fortunately, this same LISP can be directly imple-

mented in 370 machine language using standard LISP implementation

techniques. Then it runs extremely fast, typically one, two, or three

orders of magnitude faster than on the register machine simulator. How

much faster depends on the size of the character strings that the regis-

ter machine LISP interpreter is constantly sweeping through counting

parentheses in order to break lists into their component elements. Real

LISP implementations avoid this by representing LISP S-expressions

as binary trees of pointers instead of character strings, so that the de-

composition of a list into its parts is immediate. They also replace the

time-consuming search of the association list for variable bindings, by a

direct table look-up. And they keep the interpreter stack in contiguous

storage rather then representing it as a LISP S-expression.

We have written in REXX a \compiler" that automatically converts

register machine programs into exponential diophantine equations in

the manner described above. Solutions of the equation produced by this

REXX compiler correspond to successful computational histories, and

there are variables in the equation for the initial and �nal contents of

each machine register. The equation compiled from a register machine

program has no solution if the program never halts on given input, and

it has exactly one solution if the program halts for that input.

Let's look at two simple examples to get a more concrete feeling for

how the compiler works. But �rst we give in Section 2.4 a complete cast

of characters, a dictionary of the di�erent kinds of variables that appear

in the compiled equations. Next we give the compiler a 16-instruction

register machine program with every possible register machine instruc-

tion; this exercises all the capabilities of the compiler. Section 2.5 is the

compiler's log explaining how it transformed the 16 register machine
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instructions into 17 equations and 111 )'s. Note that the compiler

uses a FORTRAN-like notation for equations in which multiplication

is � and exponentiation is ��.
We don't show the rest, but this is what the compiler does. First it

expands the )'s and obtains a total of 17 + 7 � 111 = 794 equations,

and then it folds them together into a single equation. This equation is

unfortunately too big to include here; as the summary information at

the end of the compiler's log indicates, the left-hand side and right-hand

side are each more than 20,000 characters long.

Next we take an even smaller register machine program, and this

time we run it through the compiler and show all the steps up to the

�nal equation. This example really works; it is the 4-instruction pro-

gram for reversing a character string that we discussed above (Figure

2.5). Section 2.6 is the compiler's log explaining how it expands the

4-instruction program into 13 equations and 38 )'s. This is slightly

larger than the number of equations and)'s that we obtained when we

worked through this example by hand; the reason is that the compiler

uses a more systematic approach.

In Section 2.7 the compiler shows how it eliminates all )'s by ex-

panding them into equations, seven for each ). The original 13 equa-

tions and 38 )'s produced from the program are 
ush at the left mar-

gin. The 13 + 7 � 38 = 279 equations that are generated from them

are indented 6 spaces. When the compiler directly produces an equa-

tion, it appears twice, once 
ush left and then immediately afterwards

indented 6 spaces. When the compiler produces a ), it appears 
ush

left, followed immediately by the seven equations that are generated

from it, each indented six spaces. Note that the auxiliary variables

generated to expand the nth) all end with the number n. By looking

at the names of these variables one can determine the) in Section 2.6

that they came from, which will be numbered (imp.n), and see why the

compiler generated them.

The last thing that the compiler does is to take each of the 279

equations that appear indented in Section 2.7 and fold it into the left-

hand side and right-hand side of the �nal equation. This is done using

the \sum of squares" technique: x = y adds x2 + y2 to the left-hand

side and 2xy to the right-hand side. Section 2.8 is the resulting left-

hand side, and Section 2.9 is the right-hand side; the �nal equation is
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�ve pages long. More precisely, a 4-instruction register machine pro-

gram has become an 8534 + 3 + 7418 = 15955 character exponential

diophantine equation. The \+ 3" is for the missing central equal sign

surrounded by two blanks.

The equation in Sections 2.8 and 2.9 has exactly one solution in non-

negative integers if output.B is the character-string reversal of input.A.

It has no solution if output.B is not the reversal of input.A. One can

jump into this equation, look at the names of the variables, and then

with the help of Section 2.6 determine the corresponding part of the

register machine program.

That concludes Chapter 2. In Chapter 3 we present a version of

pure LISP. In Chapter 4 we program a register machine to interpret this

LISP, and then compile the interpreter into a universal exponential dio-

phantine equation, which will conclude our preparatory programming

work and bring us to the theoretical half of this book.

2.4 Dictionary of Auxiliary Variables U-

sed in Arithmetization | Dramatis

Personae

i (vector)

This is a base-q number with time digits all of which are 1's.

time (scalar)

This is the time it takes the register machine to halt, and it is also

the number of components in vectors, i.e., the number of base-q

digits in variables which represent computational histories.

total.input (scalar)

This is the sum of the initial contents of all machine registers.

q (scalar)

This power of two is the base used in vectors which represent

computational histories.

q.minus.1 (scalar)

This is q � 1.
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ic (vector)

This is a vector giving the label of the instruction being executed

at any given time. I.e., if at time t the instruction LABEL is

executed, then the base-q digit of ic corresponding to qt is the

binary representation of the S-expression (LABEL).

next.ic (vector)

This is a vector giving the label of the next instruction to be ex-

ecuted. I.e., if at time t+ 1 the instruction LABEL is executed,

then the base-q digit of ic corresponding to qt is the binary rep-

resentation of the S-expression (LABEL).

longest.label (scalar)

This is the number of characters in the longest label of any in-

struction in the program.

number.of.instructions (scalar)

This is the total number of instructions in the program.

REGISTER (vector)

This is a vector giving the contents of REGISTER as a function

of time. I.e., the base-q digit corresponding to qt is the contents

of REGISTER at time t.

LABEL (logical vector)

This is a vector giving the truth of the assertion that LABEL is

the current instruction being executed as a function of time. I.e.,

the base-q digit corresponding to qt is 1 if LABEL is executed at

time t, and it is 0 if LABEL is not executed at time t.

char.REGISTER (vector)

This is a vector giving the �rst character (i.e., the rightmost 8

bits) in each register as a function of time. I.e., the base-q digit

corresponding to qt is the number between 0 and 255 that repre-

sents the �rst character in REGISTER at time t.

shift.REGISTER (vector)

This is a vector giving the 8-bit right shift of each register as a

function of time. I.e., the base-q digit corresponding to qt is the
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integer part of the result of dividing the contents of REGISTER

at time t by 256.

input.REGISTER (scalar)

This is the initial contents of REGISTER.

output.REGISTER (scalar)

This is the �nal contents of REGISTER.

eq.REGISTER1.REGISTER2 (logical vector)

This is a vector giving the truth of the assertion that the rightmost

8 bits of REGISTER1 and REGISTER2 are equal as a function

of time. I.e., the base-q digit corresponding to qt is 1 if the �rst

characters in REGISTER1 and REGISTER2 are equal at time t,

and it is 0 if the �rst characters in REGISTER1 and REGISTER2

are unequal at time t.

eq.REGISTER.CONSTANT (logical vector)

This is a vector giving the truth of the assertion that the right-

most 8 bits of REGISTER are equal to a CONSTANT as a func-

tion of time. I.e., the base-q digit corresponding to qt is 1 if the

�rst character in REGISTER and the CONSTANT are equal at

time t, and it is 0 if the �rst character in REGISTER and the

CONSTANT are unequal at time t.

ge.REGISTER1.REGISTER2 (logical vector)

This is a vector giving the truth of the assertion that the rightmost

8 bits of REGISTER1 are greater than or equal to the rightmost

8 bits of REGISTER2 as a function of time. I.e., the base-q digit

corresponding to qt is 1 if the �rst character in REGISTER1 is

greater than or equal to the �rst character in REGISTER2 at

time t, and it is 0 if the �rst character in REGISTER1 is less

than the �rst character in REGISTER2 at time t.

ge.REGISTER.CONSTANT (logical vector)

This is a vector giving the truth of the assertion that the rightmost

8 bits of REGISTER are greater than or equal to a CONSTANT

as a function of time. I.e., the base-q digit corresponding to qt

is 1 if the �rst character in REGISTER is greater than or equal
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to the CONSTANT at time t, and it is 0 if the �rst character in

REGISTER is less than the CONSTANT at time t.

ge.CONSTANT.REGISTER (logical vector)

This is a vector giving the truth of the assertion that a CON-

STANT is greater than or equal to the rightmost 8 bits of REG-

ISTER as a function of time. I.e., the base-q digit corresponding

to qt is 1 if the CONSTANT is greater than or equal to the �rst

character in REGISTER at time t, and it is 0 if the CONSTANT

is less than the contents of REGISTER at time t.

goback.LABEL (vector)

This vector's t-th component (i.e., the base-q digit corresponding

to qt) is the same as the corresponding component of next.ic if

the GOBACK instruction LABEL is executed at time t, and it is

0 otherwise.

set.REGISTER (logical vector)

This vector's t-th component (i.e., the base-q digit corresponding

to qt) is 1 if REGISTER is set at time t, and it is 0 otherwise.

set.REGISTER.LABEL (vector)

This vector's t-th component (i.e., the base-q digit corresponding

to qt) is the new contents of REGISTER resulting from executing

LABEL if LABEL sets REGISTER and is executed at time t, and

it is 0 otherwise.

dont.set.REGISTER (vector)

This vector's t-th component (i.e., the base-q digit corresponding

to qt) gives the previous contents of REGISTER if the instruction

executed at time t does not set REGISTER, and it is 0 otherwise.

rNUMBER

The left-hand side of the NUMBERth implication.

sNUMBER

The right-hand side of the NUMBERth implication.

tNUMBER

The base used in expanding the NUMBERth implication.
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uNUMBER

The binomial coe�cient used in expanding the NUMBERth im-

plication.

vNUMBER

A junk variable used in expanding the NUMBERth implication.

wNUMBER

A junk variable used in expanding the NUMBERth implication.

xNUMBER

A junk variable used in expanding the NUMBERth implication.

yNUMBER

A junk variable used in expanding the NUMBERth implication.

zNUMBER

A junk variable used in expanding the NUMBERth implication.

2.5 An Example of Arithmetization

Program:

L1: GOTO L1

L2: JUMP C L1

L3: GOBACK C

L4: NEQ A C'a' L1

L5: NEQ A B L1

L6: EQ A C'b' L1

L7: EQ A B L1

L8: OUT C

L9: DUMP

L10: HALT

L11: SET A C'a'

L12: SET A B

L13: RIGHT C

L14: LEFT A C'b'

L15: LEFT A B

L16: HALT
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Equations defining base q ....................................

(eq.1) total.input = input.A + input.B + input.C

(eq.2) number.of.instructions = 16

(eq.3) longest.label = 3

(eq.4) q = 256 ** ( total.input + time +

number.of.instructions + longest.label + 3 )

(eq.5) q.minus.1 + 1 = q

Equation defining i, all of whose base q digits are 1's:

(eq.6) 1 + q * i = i + q ** time

Basic Label Variable Equations *******************************

(imp.1) L1 => i

(imp.2) L2 => i

(imp.3) L3 => i

(imp.4) L4 => i

(imp.5) L5 => i

(imp.6) L6 => i

(imp.7) L7 => i

(imp.8) L8 => i

(imp.9) L9 => i

(imp.10) L10 => i

(imp.11) L11 => i

(imp.12) L12 => i

(imp.13) L13 => i

(imp.14) L14 => i

(imp.15) L15 => i

(imp.16) L16 => i

(eq.7) i = L1 + L2 + L3 + L4 + L5 + L6 + L7 + L8 + L9 +

L10 + L11 + L12 + L13 + L14 + L15 + L16

Equations for starting & halting:

(imp.17) 1 => L1

(eq.8) q ** time = q * L10 + q * L16

Equations for Flow of Control ********************************
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L1: GOTO L1

(imp.18) q * L1 => L1

L2: JUMP C L1

(imp.19) q * L2 => L1

L3: GOBACK C

(imp.20) goback.L3 => C

(imp.21) goback.L3 => q.minus.1 * L3

(imp.22) C => goback.L3 + q.minus.1 * i - q.minus.1 * L3

(imp.23) goback.L3 => next.ic

(imp.24) goback.L3 => q.minus.1 * L3

(imp.25) next.ic => goback.L3 + q.minus.1 * i - q.minus.1 *

L3

L4: NEQ A C'a' L1

(imp.26) q * L4 => L5 + L1

(imp.27) q * L4 => L1 + q * eq.A.C'a'

L5: NEQ A B L1

(imp.28) q * L5 => L6 + L1

(imp.29) q * L5 => L1 + q * eq.A.B

L6: EQ A C'b' L1

(imp.30) q * L6 => L7 + L1

(imp.31) q * L6 => L7 + q * eq.A.C'b'

L7: EQ A B L1

(imp.32) q * L7 => L8 + L1

(imp.33) q * L7 => L8 + q * eq.A.B
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L8: OUT C

(imp.34) q * L8 => L9

L9: DUMP

(imp.35) q * L9 => L10

L10: HALT

L11: SET A C'a'

(imp.36) q * L11 => L12

L12: SET A B

(imp.37) q * L12 => L13

L13: RIGHT C

(imp.38) q * L13 => L14

L14: LEFT A C'b'

(imp.39) q * L14 => L15

L15: LEFT A B

(imp.40) q * L15 => L16

L16: HALT

Instruction Counter equations (needed for GOBACK's) ..........

The ic vector is defined as follows:

C'(L1)' * L1 + C'(L2)' * L2 + C'(L3)' * L3 +

C'(L4)' * L4 + C'(L5)' * L5 + C'(L6)' * L6 +

C'(L7)' * L7 + C'(L8)' * L8 + C'(L9)' * L9 +
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C'(L10)' * L10 + C'(L11)' * L11 + C'(L12)' * L12 +

C'(L13)' * L13 + C'(L14)' * L14 + C'(L15)' * L15 +

C'(L16)' * L16

In other words,

(eq.9) ic = 1075605632 * L1 + 1083994240 * L2 +

1079799936 * L3 + 1088188544 * L4 + 1077702784 *

L5 + 1086091392 * L6 + 1081897088 * L7 +

1090285696 * L8 + 1073901696 * L9 + 278839193728 *

L10 + 275349532800 * L11 + 277497016448 * L12 +

276423274624 * L13 + 278570758272 * L14 +

275886403712 * L15 + 278033887360 * L16

(imp.41) q * next.ic => ic

(imp.42) ic => q * next.ic + q - 1

Auxiliary Register Equations *********************************

(3 =>'s are produced whenever a register's value is set)

(6 =>'s for a LEFT that sets 2 registers)

L1: GOTO L1

L2: JUMP C L1

Note: C'(L3)' is 1079799936

(imp.43) set.C.L2 => 1079799936 * i

(imp.44) set.C.L2 => q.minus.1 * L2

(imp.45) 1079799936 * i => set.C.L2 + q.minus.1 * i -

q.minus.1 * L2

L3: GOBACK C

L4: NEQ A C'a' L1

L5: NEQ A B L1

L6: EQ A C'b' L1
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L7: EQ A B L1

L8: OUT C

L9: DUMP

L10: HALT

L11: SET A C'a'

(imp.46) set.A.L11 => 184 * i

(imp.47) set.A.L11 => q.minus.1 * L11

(imp.48) 184 * i => set.A.L11 + q.minus.1 * i - q.minus.1 *

L11

L12: SET A B

(imp.49) set.A.L12 => B

(imp.50) set.A.L12 => q.minus.1 * L12

(imp.51) B => set.A.L12 + q.minus.1 * i - q.minus.1 * L12

L13: RIGHT C

(imp.52) set.C.L13 => shift.C

(imp.53) set.C.L13 => q.minus.1 * L13

(imp.54) shift.C => set.C.L13 + q.minus.1 * i - q.minus.1 *

L13

L14: LEFT A C'b'

(imp.55) set.A.L14 => 256 * A + 120 * i

(imp.56) set.A.L14 => q.minus.1 * L14

(imp.57) 256 * A + 120 * i => set.A.L14 + q.minus.1 * i -

q.minus.1 * L14

L15: LEFT A B

(imp.58) set.A.L15 => 256 * A + char.B



2.5. AN EXAMPLE OF ARITHMETIZATION 55

(imp.59) set.A.L15 => q.minus.1 * L15

(imp.60) 256 * A + char.B => set.A.L15 + q.minus.1 * i -

q.minus.1 * L15

(imp.61) set.B.L15 => shift.B

(imp.62) set.B.L15 => q.minus.1 * L15

(imp.63) shift.B => set.B.L15 + q.minus.1 * i - q.minus.1 *

L15

L16: HALT

Main Register Equations **************************************

Register A ...................................................

(imp.64) A => q.minus.1 * i

(eq.10) A + output.A * q ** time = input.A + q * set.A.L11

+ q * set.A.L12 + q * set.A.L14 + q * set.A.L15 +

q * dont.set.A

(eq.11) set.A = L11 + L12 + L14 + L15

(imp.65) dont.set.A => A

(imp.66) dont.set.A => q.minus.1 * i - q.minus.1 * set.A

(imp.67) A => dont.set.A + q.minus.1 * set.A

(imp.68) 256 * shift.A => A

(imp.69) 256 * shift.A => q.minus.1 * i - 255 * i

(imp.70) A => 256 * shift.A + 255 * i

(eq.12) A = 256 * shift.A + char.A

Register B ...................................................

(imp.71) B => q.minus.1 * i

(eq.13) B + output.B * q ** time = input.B + q * set.B.L15

+ q * dont.set.B

(eq.14) set.B = L15

(imp.72) dont.set.B => B

(imp.73) dont.set.B => q.minus.1 * i - q.minus.1 * set.B
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(imp.74) B => dont.set.B + q.minus.1 * set.B

(imp.75) 256 * shift.B => B

(imp.76) 256 * shift.B => q.minus.1 * i - 255 * i

(imp.77) B => 256 * shift.B + 255 * i

(eq.15) B = 256 * shift.B + char.B

Register C ...................................................

(imp.78) C => q.minus.1 * i

(eq.16) C + output.C * q ** time = input.C + q * set.C.L2

+ q * set.C.L13 + q * dont.set.C

(eq.17) set.C = L2 + L13

(imp.79) dont.set.C => C

(imp.80) dont.set.C => q.minus.1 * i - q.minus.1 * set.C

(imp.81) C => dont.set.C + q.minus.1 * set.C

(imp.82) 256 * shift.C => C

(imp.83) 256 * shift.C => q.minus.1 * i - 255 * i

(imp.84) C => 256 * shift.C + 255 * i

Equations for Compares ***************************************

Compare A C'a' ...............................................

Note: C'a' is 184

(imp.85) ge.A.C'a' => i

(imp.86) 256 * ge.A.C'a' => 256 * i + char.A - 184 * i

(imp.87) 256 * i + char.A - 184 * i => 256 * ge.A.C'a' +

255 * i

(imp.88) ge.C'a'.A => i

(imp.89) 256 * ge.C'a'.A => 256 * i + 184 * i - char.A

(imp.90) 256 * i + 184 * i - char.A => 256 * ge.C'a'.A +

255 * i

(imp.91) eq.A.C'a' => i
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(imp.92) 2 * eq.A.C'a' => ge.A.C'a' + ge.C'a'.A

(imp.93) ge.A.C'a' + ge.C'a'.A => 2 * eq.A.C'a' + i

Compare A B ..................................................

(imp.94) ge.A.B => i

(imp.95) 256 * ge.A.B => 256 * i + char.A - char.B

(imp.96) 256 * i + char.A - char.B => 256 * ge.A.B + 255 *

i

(imp.97) ge.B.A => i

(imp.98) 256 * ge.B.A => 256 * i + char.B - char.A

(imp.99) 256 * i + char.B - char.A => 256 * ge.B.A + 255 *

i

(imp.100) eq.A.B => i

(imp.101) 2 * eq.A.B => ge.A.B + ge.B.A

(imp.102) ge.A.B + ge.B.A => 2 * eq.A.B + i

Compare A C'b' ...............................................

Note: C'b' is 120

(imp.103) ge.A.C'b' => i

(imp.104) 256 * ge.A.C'b' => 256 * i + char.A - 120 * i

(imp.105) 256 * i + char.A - 120 * i => 256 * ge.A.C'b' +

255 * i

(imp.106) ge.C'b'.A => i

(imp.107) 256 * ge.C'b'.A => 256 * i + 120 * i - char.A

(imp.108) 256 * i + 120 * i - char.A => 256 * ge.C'b'.A +

255 * i

(imp.109) eq.A.C'b' => i

(imp.110) 2 * eq.A.C'b' => ge.A.C'b' + ge.C'b'.A

(imp.111) ge.A.C'b' + ge.C'b'.A => 2 * eq.A.C'b' + i

Summary Information ******************************************
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Number of labels in program..... 16

Number of registers in program.. 3

Number of equations generated... 17

Number of =>'s generated........ 111

Number of auxiliary variables... 43

Equations added to expand =>'s.. 777 (7 per =>)

Variables added to expand =>'s.. 999 (9 per =>)

Characters in left-hand side.... 24968

Characters in right-hand side... 21792

Register variables:

A B C

Label variables:

L1 L10 L11 L12 L13 L14 L15 L16 L2 L3 L4 L5 L6 L7

L8 L9

Auxiliary variables:

char.A char.B dont.set.A dont.set.B dont.set.C

eq.A.B eq.A.C'a' eq.A.C'b' ge.A.B ge.A.C'a'

ge.A.C'b' ge.B.A ge.C'a'.A ge.C'b'.A goback.L3 i

ic input.A input.B input.C longest.label next.ic

number.of.instructions output.A output.B output.C

q q.minus.1 set.A set.A.L11 set.A.L12 set.A.L14

set.A.L15 set.B set.B.L15 set.C set.C.L13 set.C.L2

shift.A shift.B shift.C time total.input

Variables added to expand =>'s:

r1 s1 t1 u1 v1 w1 x1 y1 z1 ... z111

Elapsed time is 22.732864 seconds.

2.6 A Complete Example of Arithmetiza-

tion
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Program:

L1: SET B X'00'

L2: LEFT B A

L3: NEQ A X'00' L2

L4: HALT

Equations defining base q ....................................

(eq.1) total.input = input.A + input.B

(eq.2) number.of.instructions = 4

(eq.3) longest.label = 2

(eq.4) q = 256 ** ( total.input + time +

number.of.instructions + longest.label + 3 )

(eq.5) q.minus.1 + 1 = q

Equation defining i, all of whose base q digits are 1's:

(eq.6) 1 + q * i = i + q ** time

Basic Label Variable Equations *******************************

(imp.1) L1 => i

(imp.2) L2 => i

(imp.3) L3 => i

(imp.4) L4 => i

(eq.7) i = L1 + L2 + L3 + L4

Equations for starting & halting:

(imp.5) 1 => L1

(eq.8) q ** time = q * L4

Equations for Flow of Control ********************************

L1: SET B X'00'

(imp.6) q * L1 => L2

L2: LEFT B A
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(imp.7) q * L2 => L3

L3: NEQ A X'00' L2

(imp.8) q * L3 => L4 + L2

(imp.9) q * L3 => L2 + q * eq.A.X'00'

L4: HALT

Auxiliary Register Equations *********************************

(3 =>'s are produced whenever a register's value is set)

(6 =>'s for a LEFT that sets 2 registers)

L1: SET B X'00'

(imp.10) set.B.L1 => 0 * i

(imp.11) set.B.L1 => q.minus.1 * L1

(imp.12) 0 * i => set.B.L1 + q.minus.1 * i - q.minus.1 * L1

L2: LEFT B A

(imp.13) set.B.L2 => 256 * B + char.A

(imp.14) set.B.L2 => q.minus.1 * L2

(imp.15) 256 * B + char.A => set.B.L2 + q.minus.1 * i -

q.minus.1 * L2

(imp.16) set.A.L2 => shift.A

(imp.17) set.A.L2 => q.minus.1 * L2

(imp.18) shift.A => set.A.L2 + q.minus.1 * i - q.minus.1 *

L2

L3: NEQ A X'00' L2

L4: HALT

Main Register Equations **************************************

Register A ...................................................
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(imp.19) A => q.minus.1 * i

(eq.9) A + output.A * q ** time = input.A + q * set.A.L2

+ q * dont.set.A

(eq.10) set.A = L2

(imp.20) dont.set.A => A

(imp.21) dont.set.A => q.minus.1 * i - q.minus.1 * set.A

(imp.22) A => dont.set.A + q.minus.1 * set.A

(imp.23) 256 * shift.A => A

(imp.24) 256 * shift.A => q.minus.1 * i - 255 * i

(imp.25) A => 256 * shift.A + 255 * i

(eq.11) A = 256 * shift.A + char.A

Register B ...................................................

(imp.26) B => q.minus.1 * i

(eq.12) B + output.B * q ** time = input.B + q * set.B.L1

+ q * set.B.L2 + q * dont.set.B

(eq.13) set.B = L1 + L2

(imp.27) dont.set.B => B

(imp.28) dont.set.B => q.minus.1 * i - q.minus.1 * set.B

(imp.29) B => dont.set.B + q.minus.1 * set.B

Equations for Compares ***************************************

Compare A X'00' ..............................................

Note: X'00' is 0

(imp.30) ge.A.X'00' => i

(imp.31) 256 * ge.A.X'00' => 256 * i + char.A - 0 * i

(imp.32) 256 * i + char.A - 0 * i => 256 * ge.A.X'00' + 255

* i

(imp.33) ge.X'00'.A => i

(imp.34) 256 * ge.X'00'.A => 256 * i + 0 * i - char.A
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(imp.35) 256 * i + 0 * i - char.A => 256 * ge.X'00'.A + 255

* i

(imp.36) eq.A.X'00' => i

(imp.37) 2 * eq.A.X'00' => ge.A.X'00' + ge.X'00'.A

(imp.38) ge.A.X'00' + ge.X'00'.A => 2 * eq.A.X'00' + i

Summary Information ******************************************

Number of labels in program..... 4

Number of registers in program.. 2

Number of equations generated... 13

Number of =>'s generated........ 38

Number of auxiliary variables... 23

Equations added to expand =>'s.. 266 (7 per =>)

Variables added to expand =>'s.. 342 (9 per =>)

Characters in left-hand side.... 8534

Characters in right-hand side... 7418

Register variables:

A B

Label variables:

L1 L2 L3 L4

Auxiliary variables:

char.A dont.set.A dont.set.B eq.A.X'00' ge.A.X'00'

ge.X'00'.A i input.A input.B longest.label

number.of.instructions output.A output.B q

q.minus.1 set.A set.A.L2 set.B set.B.L1 set.B.L2

shift.A time total.input

Variables added to expand =>'s:

r1 s1 t1 u1 v1 w1 x1 y1 z1 ... z38

Elapsed time is 9.485622 seconds.
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2.7 A Complete Example of Arithmetiza-

tion: Expansion of )'s

total.input = input.A + input.B

total.input = input.A+input.B

number.of.instructions = 4

number.of.instructions = 4

longest.label = 2

longest.label = 2

q = 256 ** ( total.input + time + number.of.instructions + lon

gest.label + 3 )

q = 256**(total.input+time+number.of.instructions+longe

st.label+3)

q.minus.1 + 1 = q

q.minus.1+1 = q

1 + q * i = i + q ** time

1+q*i = i+q**time

L1 => i

r1 = L1

s1 = i

t1 = 2**s1

(1+t1)**s1 = v1*t1**(r1+1) + u1*t1**r1 + w1

w1+x1+1 = t1**r1

u1+y1+1 = t1

u1 = 2*z1+ 1

L2 => i

r2 = L2

s2 = i

t2 = 2**s2

(1+t2)**s2 = v2*t2**(r2+1) + u2*t2**r2 + w2

w2+x2+1 = t2**r2

u2+y2+1 = t2

u2 = 2*z2+ 1

L3 => i

r3 = L3

s3 = i

t3 = 2**s3

(1+t3)**s3 = v3*t3**(r3+1) + u3*t3**r3 + w3
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w3+x3+1 = t3**r3

u3+y3+1 = t3

u3 = 2*z3+ 1

L4 => i

r4 = L4

s4 = i

t4 = 2**s4

(1+t4)**s4 = v4*t4**(r4+1) + u4*t4**r4 + w4

w4+x4+1 = t4**r4

u4+y4+1 = t4

u4 = 2*z4+ 1

i = L1 + L2 + L3 + L4

i = L1+L2+L3+L4

1 => L1

r5 = 1

s5 = L1

t5 = 2**s5

(1+t5)**s5 = v5*t5**(r5+1) + u5*t5**r5 + w5

w5+x5+1 = t5**r5

u5+y5+1 = t5

u5 = 2*z5+ 1

q ** time = q * L4

q**time = q*L4

q * L1 => L2

r6 = q*L1

s6 = L2

t6 = 2**s6

(1+t6)**s6 = v6*t6**(r6+1) + u6*t6**r6 + w6

w6+x6+1 = t6**r6

u6+y6+1 = t6

u6 = 2*z6+ 1

q * L2 => L3

r7 = q*L2

s7 = L3

t7 = 2**s7

(1+t7)**s7 = v7*t7**(r7+1) + u7*t7**r7 + w7

w7+x7+1 = t7**r7

u7+y7+1 = t7

u7 = 2*z7+ 1
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q * L3 => L4 + L2

r8 = q*L3

s8 = L4+L2

t8 = 2**s8

(1+t8)**s8 = v8*t8**(r8+1) + u8*t8**r8 + w8

w8+x8+1 = t8**r8

u8+y8+1 = t8

u8 = 2*z8+ 1

q * L3 => L2 + q * eq.A.X'00'

r9 = q*L3

s9 = L2+q*eq.A.X'00'

t9 = 2**s9

(1+t9)**s9 = v9*t9**(r9+1) + u9*t9**r9 + w9

w9+x9+1 = t9**r9

u9+y9+1 = t9

u9 = 2*z9+ 1

set.B.L1 => 0 * i

r10 = set.B.L1

s10 = 0*i

t10 = 2**s10

(1+t10)**s10 = v10*t10**(r10+1) + u10*t10**r10 + w10

w10+x10+1 = t10**r10

u10+y10+1 = t10

u10 = 2*z10+ 1

set.B.L1 => q.minus.1 * L1

r11 = set.B.L1

s11 = q.minus.1*L1

t11 = 2**s11

(1+t11)**s11 = v11*t11**(r11+1) + u11*t11**r11 + w11

w11+x11+1 = t11**r11

u11+y11+1 = t11

u11 = 2*z11+ 1

0 * i => set.B.L1 + q.minus.1 * i - q.minus.1 * L1

r12 = 0*i

s12+q.minus.1*L1 = set.B.L1+q.minus.1*i

t12 = 2**s12

(1+t12)**s12 = v12*t12**(r12+1) + u12*t12**r12 + w12

w12+x12+1 = t12**r12

u12+y12+1 = t12
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u12 = 2*z12+ 1

set.B.L2 => 256 * B + char.A

r13 = set.B.L2

s13 = 256*B+char.A

t13 = 2**s13

(1+t13)**s13 = v13*t13**(r13+1) + u13*t13**r13 + w13

w13+x13+1 = t13**r13

u13+y13+1 = t13

u13 = 2*z13+ 1

set.B.L2 => q.minus.1 * L2

r14 = set.B.L2

s14 = q.minus.1*L2

t14 = 2**s14

(1+t14)**s14 = v14*t14**(r14+1) + u14*t14**r14 + w14

w14+x14+1 = t14**r14

u14+y14+1 = t14

u14 = 2*z14+ 1

256 * B + char.A => set.B.L2 + q.minus.1 * i - q.minus.1 * L2

r15 = 256*B+char.A

s15+q.minus.1*L2 = set.B.L2+q.minus.1*i

t15 = 2**s15

(1+t15)**s15 = v15*t15**(r15+1) + u15*t15**r15 + w15

w15+x15+1 = t15**r15

u15+y15+1 = t15

u15 = 2*z15+ 1

set.A.L2 => shift.A

r16 = set.A.L2

s16 = shift.A

t16 = 2**s16

(1+t16)**s16 = v16*t16**(r16+1) + u16*t16**r16 + w16

w16+x16+1 = t16**r16

u16+y16+1 = t16

u16 = 2*z16+ 1

set.A.L2 => q.minus.1 * L2

r17 = set.A.L2

s17 = q.minus.1*L2

t17 = 2**s17

(1+t17)**s17 = v17*t17**(r17+1) + u17*t17**r17 + w17

w17+x17+1 = t17**r17
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u17+y17+1 = t17

u17 = 2*z17+ 1

shift.A => set.A.L2 + q.minus.1 * i - q.minus.1 * L2

r18 = shift.A

s18+q.minus.1*L2 = set.A.L2+q.minus.1*i

t18 = 2**s18

(1+t18)**s18 = v18*t18**(r18+1) + u18*t18**r18 + w18

w18+x18+1 = t18**r18

u18+y18+1 = t18

u18 = 2*z18+ 1

A => q.minus.1 * i

r19 = A

s19 = q.minus.1*i

t19 = 2**s19

(1+t19)**s19 = v19*t19**(r19+1) + u19*t19**r19 + w19

w19+x19+1 = t19**r19

u19+y19+1 = t19

u19 = 2*z19+ 1

A + output.A * q ** time = input.A + q * set.A.L2 + q * dont.s

et.A

A+output.A*q**time = input.A+q*set.A.L2+q*dont.set.A

set.A = L2

set.A = L2

dont.set.A => A

r20 = dont.set.A

s20 = A

t20 = 2**s20

(1+t20)**s20 = v20*t20**(r20+1) + u20*t20**r20 + w20

w20+x20+1 = t20**r20

u20+y20+1 = t20

u20 = 2*z20+ 1

dont.set.A => q.minus.1 * i - q.minus.1 * set.A

r21 = dont.set.A

s21+q.minus.1*set.A = q.minus.1*i

t21 = 2**s21

(1+t21)**s21 = v21*t21**(r21+1) + u21*t21**r21 + w21

w21+x21+1 = t21**r21

u21+y21+1 = t21

u21 = 2*z21+ 1
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A => dont.set.A + q.minus.1 * set.A

r22 = A

s22 = dont.set.A+q.minus.1*set.A

t22 = 2**s22

(1+t22)**s22 = v22*t22**(r22+1) + u22*t22**r22 + w22

w22+x22+1 = t22**r22

u22+y22+1 = t22

u22 = 2*z22+ 1

256 * shift.A => A

r23 = 256*shift.A

s23 = A

t23 = 2**s23

(1+t23)**s23 = v23*t23**(r23+1) + u23*t23**r23 + w23

w23+x23+1 = t23**r23

u23+y23+1 = t23

u23 = 2*z23+ 1

256 * shift.A => q.minus.1 * i - 255 * i

r24 = 256*shift.A

s24+255*i = q.minus.1*i

t24 = 2**s24

(1+t24)**s24 = v24*t24**(r24+1) + u24*t24**r24 + w24

w24+x24+1 = t24**r24

u24+y24+1 = t24

u24 = 2*z24+ 1

A => 256 * shift.A + 255 * i

r25 = A

s25 = 256*shift.A+255*i

t25 = 2**s25

(1+t25)**s25 = v25*t25**(r25+1) + u25*t25**r25 + w25

w25+x25+1 = t25**r25

u25+y25+1 = t25

u25 = 2*z25+ 1

A = 256 * shift.A + char.A

A = 256*shift.A+char.A

B => q.minus.1 * i

r26 = B

s26 = q.minus.1*i

t26 = 2**s26

(1+t26)**s26 = v26*t26**(r26+1) + u26*t26**r26 + w26
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w26+x26+1 = t26**r26

u26+y26+1 = t26

u26 = 2*z26+ 1

B + output.B * q ** time = input.B + q * set.B.L1 + q * set.B.

L2 + q * dont.set.B

B+output.B*q**time = input.B+q*set.B.L1+q*set.B.L2+q*do

nt.set.B

set.B = L1 + L2

set.B = L1+L2

dont.set.B => B

r27 = dont.set.B

s27 = B

t27 = 2**s27

(1+t27)**s27 = v27*t27**(r27+1) + u27*t27**r27 + w27

w27+x27+1 = t27**r27

u27+y27+1 = t27

u27 = 2*z27+ 1

dont.set.B => q.minus.1 * i - q.minus.1 * set.B

r28 = dont.set.B

s28+q.minus.1*set.B = q.minus.1*i

t28 = 2**s28

(1+t28)**s28 = v28*t28**(r28+1) + u28*t28**r28 + w28

w28+x28+1 = t28**r28

u28+y28+1 = t28

u28 = 2*z28+ 1

B => dont.set.B + q.minus.1 * set.B

r29 = B

s29 = dont.set.B+q.minus.1*set.B

t29 = 2**s29

(1+t29)**s29 = v29*t29**(r29+1) + u29*t29**r29 + w29

w29+x29+1 = t29**r29

u29+y29+1 = t29

u29 = 2*z29+ 1

ge.A.X'00' => i

r30 = ge.A.X'00'

s30 = i

t30 = 2**s30

(1+t30)**s30 = v30*t30**(r30+1) + u30*t30**r30 + w30

w30+x30+1 = t30**r30
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u30+y30+1 = t30

u30 = 2*z30+ 1

256 * ge.A.X'00' => 256 * i + char.A - 0 * i

r31 = 256*ge.A.X'00'

s31+0*i = 256*i+char.A

t31 = 2**s31

(1+t31)**s31 = v31*t31**(r31+1) + u31*t31**r31 + w31

w31+x31+1 = t31**r31

u31+y31+1 = t31

u31 = 2*z31+ 1

256 * i + char.A - 0 * i => 256 * ge.A.X'00' + 255 * i

r32+0*i = 256*i+char.A

s32 = 256*ge.A.X'00'+255*i

t32 = 2**s32

(1+t32)**s32 = v32*t32**(r32+1) + u32*t32**r32 + w32

w32+x32+1 = t32**r32

u32+y32+1 = t32

u32 = 2*z32+ 1

ge.X'00'.A => i

r33 = ge.X'00'.A

s33 = i

t33 = 2**s33

(1+t33)**s33 = v33*t33**(r33+1) + u33*t33**r33 + w33

w33+x33+1 = t33**r33

u33+y33+1 = t33

u33 = 2*z33+ 1

256 * ge.X'00'.A => 256 * i + 0 * i - char.A

r34 = 256*ge.X'00'.A

s34+char.A = 256*i+0*i

t34 = 2**s34

(1+t34)**s34 = v34*t34**(r34+1) + u34*t34**r34 + w34

w34+x34+1 = t34**r34

u34+y34+1 = t34

u34 = 2*z34+ 1

256 * i + 0 * i - char.A => 256 * ge.X'00'.A + 255 * i

r35+char.A = 256*i+0*i

s35 = 256*ge.X'00'.A+255*i

t35 = 2**s35

(1+t35)**s35 = v35*t35**(r35+1) + u35*t35**r35 + w35



2.8. LEFT-HAND SIDE 71

w35+x35+1 = t35**r35

u35+y35+1 = t35

u35 = 2*z35+ 1

eq.A.X'00' => i

r36 = eq.A.X'00'

s36 = i

t36 = 2**s36

(1+t36)**s36 = v36*t36**(r36+1) + u36*t36**r36 + w36

w36+x36+1 = t36**r36

u36+y36+1 = t36

u36 = 2*z36+ 1

2 * eq.A.X'00' => ge.A.X'00' + ge.X'00'.A

r37 = 2*eq.A.X'00'

s37 = ge.A.X'00'+ge.X'00'.A

t37 = 2**s37

(1+t37)**s37 = v37*t37**(r37+1) + u37*t37**r37 + w37

w37+x37+1 = t37**r37

u37+y37+1 = t37

u37 = 2*z37+ 1

ge.A.X'00' + ge.X'00'.A => 2 * eq.A.X'00' + i

r38 = ge.A.X'00'+ge.X'00'.A

s38 = 2*eq.A.X'00'+i

t38 = 2**s38

(1+t38)**s38 = v38*t38**(r38+1) + u38*t38**r38 + w38

w38+x38+1 = t38**r38

u38+y38+1 = t38

u38 = 2*z38+ 1

2.8 A Complete Example of Arithmetiza-

tion: Left-Hand Side

(total.input)**2+(input.A+input.B)**2 + (number.of.instruction

s)**2+(4)**2 + (longest.label)**2+(2)**2 + (q)**2+(256**(total

.input+time+number.of.instructions+longest.label+3))**2 + (q.m

inus.1+1)**2+(q)**2 + (1+q*i)**2+(i+q**time)**2 + (r1)**2+(L1)

**2 + (s1)**2+(i)**2 + (t1)**2+(2**s1)**2 + ((1+t1)**s1)**2+(v

1*t1**(r1+1)+u1*t1**r1+w1)**2 + (w1+x1+1)**2+(t1**r1)**2 + (u1

+y1+1)**2+(t1)**2 + (u1)**2+(2*z1+1)**2 + (r2)**2+(L2)**2 + (s
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2)**2+(i)**2 + (t2)**2+(2**s2)**2 + ((1+t2)**s2)**2+(v2*t2**(r

2+1)+u2*t2**r2+w2)**2 + (w2+x2+1)**2+(t2**r2)**2 + (u2+y2+1)**

2+(t2)**2 + (u2)**2+(2*z2+1)**2 + (r3)**2+(L3)**2 + (s3)**2+(i

)**2 + (t3)**2+(2**s3)**2 + ((1+t3)**s3)**2+(v3*t3**(r3+1)+u3*

t3**r3+w3)**2 + (w3+x3+1)**2+(t3**r3)**2 + (u3+y3+1)**2+(t3)**

2 + (u3)**2+(2*z3+1)**2 + (r4)**2+(L4)**2 + (s4)**2+(i)**2 + (

t4)**2+(2**s4)**2 + ((1+t4)**s4)**2+(v4*t4**(r4+1)+u4*t4**r4+w

4)**2 + (w4+x4+1)**2+(t4**r4)**2 + (u4+y4+1)**2+(t4)**2 + (u4)

**2+(2*z4+1)**2 + (i)**2+(L1+L2+L3+L4)**2 + (r5)**2+(1)**2 + (

s5)**2+(L1)**2 + (t5)**2+(2**s5)**2 + ((1+t5)**s5)**2+(v5*t5**

(r5+1)+u5*t5**r5+w5)**2 + (w5+x5+1)**2+(t5**r5)**2 + (u5+y5+1)

**2+(t5)**2 + (u5)**2+(2*z5+1)**2 + (q**time)**2+(q*L4)**2 + (

r6)**2+(q*L1)**2 + (s6)**2+(L2)**2 + (t6)**2+(2**s6)**2 + ((1+

t6)**s6)**2+(v6*t6**(r6+1)+u6*t6**r6+w6)**2 + (w6+x6+1)**2+(t6

**r6)**2 + (u6+y6+1)**2+(t6)**2 + (u6)**2+(2*z6+1)**2 + (r7)**

2+(q*L2)**2 + (s7)**2+(L3)**2 + (t7)**2+(2**s7)**2 + ((1+t7)**

s7)**2+(v7*t7**(r7+1)+u7*t7**r7+w7)**2 + (w7+x7+1)**2+(t7**r7)

**2 + (u7+y7+1)**2+(t7)**2 + (u7)**2+(2*z7+1)**2 + (r8)**2+(q*

L3)**2 + (s8)**2+(L4+L2)**2 + (t8)**2+(2**s8)**2 + ((1+t8)**s8

)**2+(v8*t8**(r8+1)+u8*t8**r8+w8)**2 + (w8+x8+1)**2+(t8**r8)**

2 + (u8+y8+1)**2+(t8)**2 + (u8)**2+(2*z8+1)**2 + (r9)**2+(q*L3

)**2 + (s9)**2+(L2+q*eq.A.X'00')**2 + (t9)**2+(2**s9)**2 + ((1

+t9)**s9)**2+(v9*t9**(r9+1)+u9*t9**r9+w9)**2 + (w9+x9+1)**2+(t

9**r9)**2 + (u9+y9+1)**2+(t9)**2 + (u9)**2+(2*z9+1)**2 + (r10)

**2+(set.B.L1)**2 + (s10)**2+(0*i)**2 + (t10)**2+(2**s10)**2 +

((1+t10)**s10)**2+(v10*t10**(r10+1)+u10*t10**r10+w10)**2 + (w

10+x10+1)**2+(t10**r10)**2 + (u10+y10+1)**2+(t10)**2 + (u10)**

2+(2*z10+1)**2 + (r11)**2+(set.B.L1)**2 + (s11)**2+(q.minus.1*

L1)**2 + (t11)**2+(2**s11)**2 + ((1+t11)**s11)**2+(v11*t11**(r

11+1)+u11*t11**r11+w11)**2 + (w11+x11+1)**2+(t11**r11)**2 + (u

11+y11+1)**2+(t11)**2 + (u11)**2+(2*z11+1)**2 + (r12)**2+(0*i)

**2 + (s12+q.minus.1*L1)**2+(set.B.L1+q.minus.1*i)**2 + (t12)*

*2+(2**s12)**2 + ((1+t12)**s12)**2+(v12*t12**(r12+1)+u12*t12**

r12+w12)**2 + (w12+x12+1)**2+(t12**r12)**2 + (u12+y12+1)**2+(t

12)**2 + (u12)**2+(2*z12+1)**2 + (r13)**2+(set.B.L2)**2 + (s13

)**2+(256*B+char.A)**2 + (t13)**2+(2**s13)**2 + ((1+t13)**s13)

**2+(v13*t13**(r13+1)+u13*t13**r13+w13)**2 + (w13+x13+1)**2+(t

13**r13)**2 + (u13+y13+1)**2+(t13)**2 + (u13)**2+(2*z13+1)**2

+ (r14)**2+(set.B.L2)**2 + (s14)**2+(q.minus.1*L2)**2 + (t14)*
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*2+(2**s14)**2 + ((1+t14)**s14)**2+(v14*t14**(r14+1)+u14*t14**

r14+w14)**2 + (w14+x14+1)**2+(t14**r14)**2 + (u14+y14+1)**2+(t

14)**2 + (u14)**2+(2*z14+1)**2 + (r15)**2+(256*B+char.A)**2 +

(s15+q.minus.1*L2)**2+(set.B.L2+q.minus.1*i)**2 + (t15)**2+(2*

*s15)**2 + ((1+t15)**s15)**2+(v15*t15**(r15+1)+u15*t15**r15+w1

5)**2 + (w15+x15+1)**2+(t15**r15)**2 + (u15+y15+1)**2+(t15)**2

+ (u15)**2+(2*z15+1)**2 + (r16)**2+(set.A.L2)**2 + (s16)**2+(

shift.A)**2 + (t16)**2+(2**s16)**2 + ((1+t16)**s16)**2+(v16*t1

6**(r16+1)+u16*t16**r16+w16)**2 + (w16+x16+1)**2+(t16**r16)**2

+ (u16+y16+1)**2+(t16)**2 + (u16)**2+(2*z16+1)**2 + (r17)**2+

(set.A.L2)**2 + (s17)**2+(q.minus.1*L2)**2 + (t17)**2+(2**s17)

**2 + ((1+t17)**s17)**2+(v17*t17**(r17+1)+u17*t17**r17+w17)**2

+ (w17+x17+1)**2+(t17**r17)**2 + (u17+y17+1)**2+(t17)**2 + (u

17)**2+(2*z17+1)**2 + (r18)**2+(shift.A)**2 + (s18+q.minus.1*L

2)**2+(set.A.L2+q.minus.1*i)**2 + (t18)**2+(2**s18)**2 + ((1+t

18)**s18)**2+(v18*t18**(r18+1)+u18*t18**r18+w18)**2 + (w18+x18

+1)**2+(t18**r18)**2 + (u18+y18+1)**2+(t18)**2 + (u18)**2+(2*z

18+1)**2 + (r19)**2+(A)**2 + (s19)**2+(q.minus.1*i)**2 + (t19)

**2+(2**s19)**2 + ((1+t19)**s19)**2+(v19*t19**(r19+1)+u19*t19*

*r19+w19)**2 + (w19+x19+1)**2+(t19**r19)**2 + (u19+y19+1)**2+(

t19)**2 + (u19)**2+(2*z19+1)**2 + (A+output.A*q**time)**2+(inp

ut.A+q*set.A.L2+q*dont.set.A)**2 + (set.A)**2+(L2)**2 + (r20)*

*2+(dont.set.A)**2 + (s20)**2+(A)**2 + (t20)**2+(2**s20)**2 +

((1+t20)**s20)**2+(v20*t20**(r20+1)+u20*t20**r20+w20)**2 + (w2

0+x20+1)**2+(t20**r20)**2 + (u20+y20+1)**2+(t20)**2 + (u20)**2

+(2*z20+1)**2 + (r21)**2+(dont.set.A)**2 + (s21+q.minus.1*set.

A)**2+(q.minus.1*i)**2 + (t21)**2+(2**s21)**2 + ((1+t21)**s21)

**2+(v21*t21**(r21+1)+u21*t21**r21+w21)**2 + (w21+x21+1)**2+(t

21**r21)**2 + (u21+y21+1)**2+(t21)**2 + (u21)**2+(2*z21+1)**2

+ (r22)**2+(A)**2 + (s22)**2+(dont.set.A+q.minus.1*set.A)**2 +

(t22)**2+(2**s22)**2 + ((1+t22)**s22)**2+(v22*t22**(r22+1)+u2

2*t22**r22+w22)**2 + (w22+x22+1)**2+(t22**r22)**2 + (u22+y22+1

)**2+(t22)**2 + (u22)**2+(2*z22+1)**2 + (r23)**2+(256*shift.A)

**2 + (s23)**2+(A)**2 + (t23)**2+(2**s23)**2 + ((1+t23)**s23)*

*2+(v23*t23**(r23+1)+u23*t23**r23+w23)**2 + (w23+x23+1)**2+(t2

3**r23)**2 + (u23+y23+1)**2+(t23)**2 + (u23)**2+(2*z23+1)**2 +

(r24)**2+(256*shift.A)**2 + (s24+255*i)**2+(q.minus.1*i)**2 +

(t24)**2+(2**s24)**2 + ((1+t24)**s24)**2+(v24*t24**(r24+1)+u2

4*t24**r24+w24)**2 + (w24+x24+1)**2+(t24**r24)**2 + (u24+y24+1
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)**2+(t24)**2 + (u24)**2+(2*z24+1)**2 + (r25)**2+(A)**2 + (s25

)**2+(256*shift.A+255*i)**2 + (t25)**2+(2**s25)**2 + ((1+t25)*

*s25)**2+(v25*t25**(r25+1)+u25*t25**r25+w25)**2 + (w25+x25+1)*

*2+(t25**r25)**2 + (u25+y25+1)**2+(t25)**2 + (u25)**2+(2*z25+1

)**2 + (A)**2+(256*shift.A+char.A)**2 + (r26)**2+(B)**2 + (s26

)**2+(q.minus.1*i)**2 + (t26)**2+(2**s26)**2 + ((1+t26)**s26)*

*2+(v26*t26**(r26+1)+u26*t26**r26+w26)**2 + (w26+x26+1)**2+(t2

6**r26)**2 + (u26+y26+1)**2+(t26)**2 + (u26)**2+(2*z26+1)**2 +

(B+output.B*q**time)**2+(input.B+q*set.B.L1+q*set.B.L2+q*dont

.set.B)**2 + (set.B)**2+(L1+L2)**2 + (r27)**2+(dont.set.B)**2

+ (s27)**2+(B)**2 + (t27)**2+(2**s27)**2 + ((1+t27)**s27)**2+(

v27*t27**(r27+1)+u27*t27**r27+w27)**2 + (w27+x27+1)**2+(t27**r

27)**2 + (u27+y27+1)**2+(t27)**2 + (u27)**2+(2*z27+1)**2 + (r2

8)**2+(dont.set.B)**2 + (s28+q.minus.1*set.B)**2+(q.minus.1*i)

**2 + (t28)**2+(2**s28)**2 + ((1+t28)**s28)**2+(v28*t28**(r28+

1)+u28*t28**r28+w28)**2 + (w28+x28+1)**2+(t28**r28)**2 + (u28+

y28+1)**2+(t28)**2 + (u28)**2+(2*z28+1)**2 + (r29)**2+(B)**2 +

(s29)**2+(dont.set.B+q.minus.1*set.B)**2 + (t29)**2+(2**s29)*

*2 + ((1+t29)**s29)**2+(v29*t29**(r29+1)+u29*t29**r29+w29)**2

+ (w29+x29+1)**2+(t29**r29)**2 + (u29+y29+1)**2+(t29)**2 + (u2

9)**2+(2*z29+1)**2 + (r30)**2+(ge.A.X'00')**2 + (s30)**2+(i)**

2 + (t30)**2+(2**s30)**2 + ((1+t30)**s30)**2+(v30*t30**(r30+1)

+u30*t30**r30+w30)**2 + (w30+x30+1)**2+(t30**r30)**2 + (u30+y3

0+1)**2+(t30)**2 + (u30)**2+(2*z30+1)**2 + (r31)**2+(256*ge.A.

X'00')**2 + (s31+0*i)**2+(256*i+char.A)**2 + (t31)**2+(2**s31)

**2 + ((1+t31)**s31)**2+(v31*t31**(r31+1)+u31*t31**r31+w31)**2

+ (w31+x31+1)**2+(t31**r31)**2 + (u31+y31+1)**2+(t31)**2 + (u

31)**2+(2*z31+1)**2 + (r32+0*i)**2+(256*i+char.A)**2 + (s32)**

2+(256*ge.A.X'00'+255*i)**2 + (t32)**2+(2**s32)**2 + ((1+t32)*

*s32)**2+(v32*t32**(r32+1)+u32*t32**r32+w32)**2 + (w32+x32+1)*

*2+(t32**r32)**2 + (u32+y32+1)**2+(t32)**2 + (u32)**2+(2*z32+1

)**2 + (r33)**2+(ge.X'00'.A)**2 + (s33)**2+(i)**2 + (t33)**2+(

2**s33)**2 + ((1+t33)**s33)**2+(v33*t33**(r33+1)+u33*t33**r33+

w33)**2 + (w33+x33+1)**2+(t33**r33)**2 + (u33+y33+1)**2+(t33)*

*2 + (u33)**2+(2*z33+1)**2 + (r34)**2+(256*ge.X'00'.A)**2 + (s

34+char.A)**2+(256*i+0*i)**2 + (t34)**2+(2**s34)**2 + ((1+t34)

**s34)**2+(v34*t34**(r34+1)+u34*t34**r34+w34)**2 + (w34+x34+1)

**2+(t34**r34)**2 + (u34+y34+1)**2+(t34)**2 + (u34)**2+(2*z34+

1)**2 + (r35+char.A)**2+(256*i+0*i)**2 + (s35)**2+(256*ge.X'00
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'.A+255*i)**2 + (t35)**2+(2**s35)**2 + ((1+t35)**s35)**2+(v35*

t35**(r35+1)+u35*t35**r35+w35)**2 + (w35+x35+1)**2+(t35**r35)*

*2 + (u35+y35+1)**2+(t35)**2 + (u35)**2+(2*z35+1)**2 + (r36)**

2+(eq.A.X'00')**2 + (s36)**2+(i)**2 + (t36)**2+(2**s36)**2 + (

(1+t36)**s36)**2+(v36*t36**(r36+1)+u36*t36**r36+w36)**2 + (w36

+x36+1)**2+(t36**r36)**2 + (u36+y36+1)**2+(t36)**2 + (u36)**2+

(2*z36+1)**2 + (r37)**2+(2*eq.A.X'00')**2 + (s37)**2+(ge.A.X'0

0'+ge.X'00'.A)**2 + (t37)**2+(2**s37)**2 + ((1+t37)**s37)**2+(

v37*t37**(r37+1)+u37*t37**r37+w37)**2 + (w37+x37+1)**2+(t37**r

37)**2 + (u37+y37+1)**2+(t37)**2 + (u37)**2+(2*z37+1)**2 + (r3

8)**2+(ge.A.X'00'+ge.X'00'.A)**2 + (s38)**2+(2*eq.A.X'00'+i)**

2 + (t38)**2+(2**s38)**2 + ((1+t38)**s38)**2+(v38*t38**(r38+1)

+u38*t38**r38+w38)**2 + (w38+x38+1)**2+(t38**r38)**2 + (u38+y3

8+1)**2+(t38)**2 + (u38)**2+(2*z38+1)**2

2.9 A Complete Example of Arithmetiza-

tion: Right-Hand Side

2*(total.input)*(input.A+input.B) + 2*(number.of.instructions)

*(4) + 2*(longest.label)*(2) + 2*(q)*(256**(total.input+time+n

umber.of.instructions+longest.label+3)) + 2*(q.minus.1+1)*(q)

+ 2*(1+q*i)*(i+q**time) + 2*(r1)*(L1) + 2*(s1)*(i) + 2*(t1)*(2

**s1) + 2*((1+t1)**s1)*(v1*t1**(r1+1)+u1*t1**r1+w1) + 2*(w1+x1

+1)*(t1**r1) + 2*(u1+y1+1)*(t1) + 2*(u1)*(2*z1+1) + 2*(r2)*(L2

) + 2*(s2)*(i) + 2*(t2)*(2**s2) + 2*((1+t2)**s2)*(v2*t2**(r2+1

)+u2*t2**r2+w2) + 2*(w2+x2+1)*(t2**r2) + 2*(u2+y2+1)*(t2) + 2*

(u2)*(2*z2+1) + 2*(r3)*(L3) + 2*(s3)*(i) + 2*(t3)*(2**s3) + 2*

((1+t3)**s3)*(v3*t3**(r3+1)+u3*t3**r3+w3) + 2*(w3+x3+1)*(t3**r

3) + 2*(u3+y3+1)*(t3) + 2*(u3)*(2*z3+1) + 2*(r4)*(L4) + 2*(s4)

*(i) + 2*(t4)*(2**s4) + 2*((1+t4)**s4)*(v4*t4**(r4+1)+u4*t4**r

4+w4) + 2*(w4+x4+1)*(t4**r4) + 2*(u4+y4+1)*(t4) + 2*(u4)*(2*z4

+1) + 2*(i)*(L1+L2+L3+L4) + 2*(r5)*(1) + 2*(s5)*(L1) + 2*(t5)*

(2**s5) + 2*((1+t5)**s5)*(v5*t5**(r5+1)+u5*t5**r5+w5) + 2*(w5+

x5+1)*(t5**r5) + 2*(u5+y5+1)*(t5) + 2*(u5)*(2*z5+1) + 2*(q**ti

me)*(q*L4) + 2*(r6)*(q*L1) + 2*(s6)*(L2) + 2*(t6)*(2**s6) + 2*

((1+t6)**s6)*(v6*t6**(r6+1)+u6*t6**r6+w6) + 2*(w6+x6+1)*(t6**r

6) + 2*(u6+y6+1)*(t6) + 2*(u6)*(2*z6+1) + 2*(r7)*(q*L2) + 2*(s

7)*(L3) + 2*(t7)*(2**s7) + 2*((1+t7)**s7)*(v7*t7**(r7+1)+u7*t7
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**r7+w7) + 2*(w7+x7+1)*(t7**r7) + 2*(u7+y7+1)*(t7) + 2*(u7)*(2

*z7+1) + 2*(r8)*(q*L3) + 2*(s8)*(L4+L2) + 2*(t8)*(2**s8) + 2*(

(1+t8)**s8)*(v8*t8**(r8+1)+u8*t8**r8+w8) + 2*(w8+x8+1)*(t8**r8

) + 2*(u8+y8+1)*(t8) + 2*(u8)*(2*z8+1) + 2*(r9)*(q*L3) + 2*(s9

)*(L2+q*eq.A.X'00') + 2*(t9)*(2**s9) + 2*((1+t9)**s9)*(v9*t9**

(r9+1)+u9*t9**r9+w9) + 2*(w9+x9+1)*(t9**r9) + 2*(u9+y9+1)*(t9)

+ 2*(u9)*(2*z9+1) + 2*(r10)*(set.B.L1) + 2*(s10)*(0*i) + 2*(t

10)*(2**s10) + 2*((1+t10)**s10)*(v10*t10**(r10+1)+u10*t10**r10

+w10) + 2*(w10+x10+1)*(t10**r10) + 2*(u10+y10+1)*(t10) + 2*(u1

0)*(2*z10+1) + 2*(r11)*(set.B.L1) + 2*(s11)*(q.minus.1*L1) + 2

*(t11)*(2**s11) + 2*((1+t11)**s11)*(v11*t11**(r11+1)+u11*t11**

r11+w11) + 2*(w11+x11+1)*(t11**r11) + 2*(u11+y11+1)*(t11) + 2*

(u11)*(2*z11+1) + 2*(r12)*(0*i) + 2*(s12+q.minus.1*L1)*(set.B.

L1+q.minus.1*i) + 2*(t12)*(2**s12) + 2*((1+t12)**s12)*(v12*t12

**(r12+1)+u12*t12**r12+w12) + 2*(w12+x12+1)*(t12**r12) + 2*(u1

2+y12+1)*(t12) + 2*(u12)*(2*z12+1) + 2*(r13)*(set.B.L2) + 2*(s

13)*(256*B+char.A) + 2*(t13)*(2**s13) + 2*((1+t13)**s13)*(v13*

t13**(r13+1)+u13*t13**r13+w13) + 2*(w13+x13+1)*(t13**r13) + 2*

(u13+y13+1)*(t13) + 2*(u13)*(2*z13+1) + 2*(r14)*(set.B.L2) + 2

*(s14)*(q.minus.1*L2) + 2*(t14)*(2**s14) + 2*((1+t14)**s14)*(v

14*t14**(r14+1)+u14*t14**r14+w14) + 2*(w14+x14+1)*(t14**r14) +

2*(u14+y14+1)*(t14) + 2*(u14)*(2*z14+1) + 2*(r15)*(256*B+char

.A) + 2*(s15+q.minus.1*L2)*(set.B.L2+q.minus.1*i) + 2*(t15)*(2

**s15) + 2*((1+t15)**s15)*(v15*t15**(r15+1)+u15*t15**r15+w15)

+ 2*(w15+x15+1)*(t15**r15) + 2*(u15+y15+1)*(t15) + 2*(u15)*(2*

z15+1) + 2*(r16)*(set.A.L2) + 2*(s16)*(shift.A) + 2*(t16)*(2**

s16) + 2*((1+t16)**s16)*(v16*t16**(r16+1)+u16*t16**r16+w16) +

2*(w16+x16+1)*(t16**r16) + 2*(u16+y16+1)*(t16) + 2*(u16)*(2*z1

6+1) + 2*(r17)*(set.A.L2) + 2*(s17)*(q.minus.1*L2) + 2*(t17)*(

2**s17) + 2*((1+t17)**s17)*(v17*t17**(r17+1)+u17*t17**r17+w17)

+ 2*(w17+x17+1)*(t17**r17) + 2*(u17+y17+1)*(t17) + 2*(u17)*(2

*z17+1) + 2*(r18)*(shift.A) + 2*(s18+q.minus.1*L2)*(set.A.L2+q

.minus.1*i) + 2*(t18)*(2**s18) + 2*((1+t18)**s18)*(v18*t18**(r

18+1)+u18*t18**r18+w18) + 2*(w18+x18+1)*(t18**r18) + 2*(u18+y1

8+1)*(t18) + 2*(u18)*(2*z18+1) + 2*(r19)*(A) + 2*(s19)*(q.minu

s.1*i) + 2*(t19)*(2**s19) + 2*((1+t19)**s19)*(v19*t19**(r19+1)

+u19*t19**r19+w19) + 2*(w19+x19+1)*(t19**r19) + 2*(u19+y19+1)*

(t19) + 2*(u19)*(2*z19+1) + 2*(A+output.A*q**time)*(input.A+q*

set.A.L2+q*dont.set.A) + 2*(set.A)*(L2) + 2*(r20)*(dont.set.A)
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+ 2*(s20)*(A) + 2*(t20)*(2**s20) + 2*((1+t20)**s20)*(v20*t20*

*(r20+1)+u20*t20**r20+w20) + 2*(w20+x20+1)*(t20**r20) + 2*(u20

+y20+1)*(t20) + 2*(u20)*(2*z20+1) + 2*(r21)*(dont.set.A) + 2*(

s21+q.minus.1*set.A)*(q.minus.1*i) + 2*(t21)*(2**s21) + 2*((1+

t21)**s21)*(v21*t21**(r21+1)+u21*t21**r21+w21) + 2*(w21+x21+1)

*(t21**r21) + 2*(u21+y21+1)*(t21) + 2*(u21)*(2*z21+1) + 2*(r22

)*(A) + 2*(s22)*(dont.set.A+q.minus.1*set.A) + 2*(t22)*(2**s22

) + 2*((1+t22)**s22)*(v22*t22**(r22+1)+u22*t22**r22+w22) + 2*(

w22+x22+1)*(t22**r22) + 2*(u22+y22+1)*(t22) + 2*(u22)*(2*z22+1

) + 2*(r23)*(256*shift.A) + 2*(s23)*(A) + 2*(t23)*(2**s23) + 2

*((1+t23)**s23)*(v23*t23**(r23+1)+u23*t23**r23+w23) + 2*(w23+x

23+1)*(t23**r23) + 2*(u23+y23+1)*(t23) + 2*(u23)*(2*z23+1) + 2

*(r24)*(256*shift.A) + 2*(s24+255*i)*(q.minus.1*i) + 2*(t24)*(

2**s24) + 2*((1+t24)**s24)*(v24*t24**(r24+1)+u24*t24**r24+w24)

+ 2*(w24+x24+1)*(t24**r24) + 2*(u24+y24+1)*(t24) + 2*(u24)*(2

*z24+1) + 2*(r25)*(A) + 2*(s25)*(256*shift.A+255*i) + 2*(t25)*

(2**s25) + 2*((1+t25)**s25)*(v25*t25**(r25+1)+u25*t25**r25+w25

) + 2*(w25+x25+1)*(t25**r25) + 2*(u25+y25+1)*(t25) + 2*(u25)*(

2*z25+1) + 2*(A)*(256*shift.A+char.A) + 2*(r26)*(B) + 2*(s26)*

(q.minus.1*i) + 2*(t26)*(2**s26) + 2*((1+t26)**s26)*(v26*t26**

(r26+1)+u26*t26**r26+w26) + 2*(w26+x26+1)*(t26**r26) + 2*(u26+

y26+1)*(t26) + 2*(u26)*(2*z26+1) + 2*(B+output.B*q**time)*(inp

ut.B+q*set.B.L1+q*set.B.L2+q*dont.set.B) + 2*(set.B)*(L1+L2) +

2*(r27)*(dont.set.B) + 2*(s27)*(B) + 2*(t27)*(2**s27) + 2*((1

+t27)**s27)*(v27*t27**(r27+1)+u27*t27**r27+w27) + 2*(w27+x27+1

)*(t27**r27) + 2*(u27+y27+1)*(t27) + 2*(u27)*(2*z27+1) + 2*(r2

8)*(dont.set.B) + 2*(s28+q.minus.1*set.B)*(q.minus.1*i) + 2*(t

28)*(2**s28) + 2*((1+t28)**s28)*(v28*t28**(r28+1)+u28*t28**r28

+w28) + 2*(w28+x28+1)*(t28**r28) + 2*(u28+y28+1)*(t28) + 2*(u2

8)*(2*z28+1) + 2*(r29)*(B) + 2*(s29)*(dont.set.B+q.minus.1*set

.B) + 2*(t29)*(2**s29) + 2*((1+t29)**s29)*(v29*t29**(r29+1)+u2

9*t29**r29+w29) + 2*(w29+x29+1)*(t29**r29) + 2*(u29+y29+1)*(t2

9) + 2*(u29)*(2*z29+1) + 2*(r30)*(ge.A.X'00') + 2*(s30)*(i) +

2*(t30)*(2**s30) + 2*((1+t30)**s30)*(v30*t30**(r30+1)+u30*t30*

*r30+w30) + 2*(w30+x30+1)*(t30**r30) + 2*(u30+y30+1)*(t30) + 2

*(u30)*(2*z30+1) + 2*(r31)*(256*ge.A.X'00') + 2*(s31+0*i)*(256

*i+char.A) + 2*(t31)*(2**s31) + 2*((1+t31)**s31)*(v31*t31**(r3

1+1)+u31*t31**r31+w31) + 2*(w31+x31+1)*(t31**r31) + 2*(u31+y31

+1)*(t31) + 2*(u31)*(2*z31+1) + 2*(r32+0*i)*(256*i+char.A) + 2
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*(s32)*(256*ge.A.X'00'+255*i) + 2*(t32)*(2**s32) + 2*((1+t32)*

*s32)*(v32*t32**(r32+1)+u32*t32**r32+w32) + 2*(w32+x32+1)*(t32

**r32) + 2*(u32+y32+1)*(t32) + 2*(u32)*(2*z32+1) + 2*(r33)*(ge

.X'00'.A) + 2*(s33)*(i) + 2*(t33)*(2**s33) + 2*((1+t33)**s33)*

(v33*t33**(r33+1)+u33*t33**r33+w33) + 2*(w33+x33+1)*(t33**r33)

+ 2*(u33+y33+1)*(t33) + 2*(u33)*(2*z33+1) + 2*(r34)*(256*ge.X

'00'.A) + 2*(s34+char.A)*(256*i+0*i) + 2*(t34)*(2**s34) + 2*((

1+t34)**s34)*(v34*t34**(r34+1)+u34*t34**r34+w34) + 2*(w34+x34+

1)*(t34**r34) + 2*(u34+y34+1)*(t34) + 2*(u34)*(2*z34+1) + 2*(r

35+char.A)*(256*i+0*i) + 2*(s35)*(256*ge.X'00'.A+255*i) + 2*(t

35)*(2**s35) + 2*((1+t35)**s35)*(v35*t35**(r35+1)+u35*t35**r35

+w35) + 2*(w35+x35+1)*(t35**r35) + 2*(u35+y35+1)*(t35) + 2*(u3

5)*(2*z35+1) + 2*(r36)*(eq.A.X'00') + 2*(s36)*(i) + 2*(t36)*(2

**s36) + 2*((1+t36)**s36)*(v36*t36**(r36+1)+u36*t36**r36+w36)

+ 2*(w36+x36+1)*(t36**r36) + 2*(u36+y36+1)*(t36) + 2*(u36)*(2*

z36+1) + 2*(r37)*(2*eq.A.X'00') + 2*(s37)*(ge.A.X'00'+ge.X'00'

.A) + 2*(t37)*(2**s37) + 2*((1+t37)**s37)*(v37*t37**(r37+1)+u3

7*t37**r37+w37) + 2*(w37+x37+1)*(t37**r37) + 2*(u37+y37+1)*(t3

7) + 2*(u37)*(2*z37+1) + 2*(r38)*(ge.A.X'00'+ge.X'00'.A) + 2*(

s38)*(2*eq.A.X'00'+i) + 2*(t38)*(2**s38) + 2*((1+t38)**s38)*(v

38*t38**(r38+1)+u38*t38**r38+w38) + 2*(w38+x38+1)*(t38**r38) +

2*(u38+y38+1)*(t38) + 2*(u38)*(2*z38+1)



Chapter 3

A Version of Pure LISP

3.1 Introduction

In this chapter we present a \permissive" simpli�ed version of pure

LISP designed especially for metamathematical applications. Aside

from the rule that an S-expression must have balanced ()'s, the only

way that an expression can fail to have a value is by looping forever.

This is important because algorithms that simulate other algorithms

chosen at random, must be able to run garbage safely.

This version of LISP developed from one originally designed for

teaching [Chaitin (1976a)]. The language was reduced to its essence

and made as easy to learn as possible, and was actually used in several

university courses. Like APL, this version of LISP is so concise that

one can write it as fast as one thinks. This LISP is so simple that

an interpreter for it can be coded in three hundred and �fty lines of

REXX.

How to read this chapter: This chapter can be quite di�cult to

understand, especially if one has never programmed in LISP before.

The correct approach is to read it several times, and to try to work

through all the examples in detail. Initially the material will seem

completely incomprehensible, but all of a sudden the pieces will snap

together into a coherent whole. Alternatively, one can skim Chapters 3,

4, and 5, which depend heavily on the details of this LISP, and proceed

79
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()

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz0123456789

_+-.',!=*&?/:"$%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Figure 3.1: The LISP Character Set. These are the 128 characters

that are used in LISP S-expressions: the left and right parentheses and

the 126 one-character atoms. The place that a character appears in this

list of all 128 of them is important; it de�nes the binary representation

for that character. In this monograph we use two di�erent represen-

tations: (1) The �rst binary representation uses 8 bits per character,

with the characters in reverse order. The 8-bit string corresponding

to a character is obtained by taking the 1-origin ordinal number of its

position in the list, which ranges from 1 to 128, writing this number as

an 8-bit string in base-two, and then reversing this 8-bit string. This is

the representation used in the exponential diophantine version of the

LISP interpreter in Part I. (2) The second binary representation uses 7

bits per character, with the characters in the normal order. The 7-bit

string corresponding to a character is obtained by taking the 0-origin

ordinal number of its position in the list, which ranges from 0 to 127,

writing this number as a 7-bit string in base-two, and then reversing

this 7-bit string. This is the representation that is used to de�ne a

program-size complexity measure in Part II.
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directly to the more theoretical material in Chapter 6, which could be

based on Turing machines or any other formalism for computation.

The purpose of Chapters 3 and 4 is to show how easy it is to imple-

ment an extremely powerful and theoretically attractive programming

language on the abstract register machines that we presented in Chap-

ter 2. If one takes this for granted, then it is not necessary to study

Chapters 3 and 4 in detail. On the other hand, if one has never ex-

perienced LISP before and wishes to master it thoroughly, one should

write a LISP interpreter and run it on one's favorite computer; that is

how the author learned LISP.

3.2 De�nition of LISP

LISP is an unusual programming language created around 1960 by John

McCarthy [McCarthy (1960,1962,1981)]. It and its descendants are

frequently used in research on arti�cial intelligence [Abelson, Suss-

man and Sussman (1985), Winston and Horn (1984)]. And it

stands out for its simple design and for its precisely de�ned syntax

and semantics.

However LISP more closely resembles such fundamental subjects as

set theory and logic than its does a programming language [see Levin

(1974)]. As a result LISP is easy to learn with little previous knowledge.

Contrariwise, those who know other programming languages may have

di�culty learning to think in the completely di�erent fashion required

by LISP.

LISP is a functional programming language, not an imperative lan-

guage like FORTRAN. In FORTRAN the question is \In order to do

something what operations must be carried out, and in what order?"

In LISP the question is \How can this function be de�ned?" The LISP

formalism consists of a handful of primitive functions and certain rules

for de�ning more complex functions from the initially given ones. In a

LISP run, after de�ning functions one requests their values for speci�c

arguments of interest. It is the LISP interpreter's task to deduce these

values using the function's de�nitions.

LISP functions are technically known as partial recursive functions.

\Partial" because in some cases they may not have a value (this situa-
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tion is analogous to division by zero or an in�nite loop). \Recursive"

because functions re-occur in their own de�nitions. The following de�-

nition of factorial n is the most familiar example of a recursive function:

if n = 0, then its value is 1, else its value is n by factorial n� 1. From

this de�nition one deduces that factorial 3 = (3 by factorial 2) = (3 by

2 by factorial 1) = (3 by 2 by 1 by factorial 0) = (3 by 2 by 1 by 1) =

6.

A LISP function whose value is always true or false is called a predi-

cate. By means of predicates the LISP formalism encompasses relations

such as \x is less than y."

Data and function de�nitions in LISP consist of S-expressions (S

stands for \symbolic"). S-expressions are made up of characters called

atoms that are grouped into lists by means of pairs of parentheses.

The atoms are most of the characters except blank, left parenthesis,

right parenthesis, left bracket, and right bracket in the largest font of

mathematical symbols that I could �nd, the APL character set. The

simplest kind of S-expression is an atom all by itself. All other S-

expressions are lists. A list consists of a left parenthesis followed by

zero or more elements (which may be atoms or sublists) followed by a

right parenthesis. Also, the empty list () is considered to be an atom.

Here are two examples of S-expressions. C is an atom.

(d(ef)d((a)))

is a list with four elements. The �rst and third elements are the atom

d. The second element is a list whose elements are the atoms e and f,

in that order. The fourth element is a list with a single element, which

is a list with a single element, which is the atom a.

The formal de�nition is as follows. The class of S-expressions is

the union of the class of atoms and the class of lists. A list consists

of a left parenthesis followed by zero or more S-expressions followed

by a right parenthesis. There is one list that is also an atom, the

empty list (). All other atoms are found in Figure 3.1, which gives the

complete 128-character set used in writing S-expressions, consisting of

the 126 one-character atoms and the left and right parenthesis. The

total number of characters is chosen to be a power of two in order to

simplify the theoretical analysis of LISP in Part II.
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In LISP the atom 1 stands for \true" and the atom 0 stands for

\false." Thus a LISP predicate is a function whose value is always 0 or

1.

It is important to note that we do not identify 0 and (). It is usual

in LISP to identify falsehood and the empty list; both are usually called

NIL. This would complicate our LISP and make it harder to write the

LISP interpreter that we give in Chapter 4, because it would be harder

to determine if two S-expressions are equal. This would also be a serious

mistake from an information-theoretic point of view, because it would

make large numbers of S-expressions into synonyms. And wasting the

expressive power of S-expressions in this manner would invalidate large

portions of Chapter 5 and Appendix B. Thus there is no single-character

synonym in our LISP for the empty list (); 2 characters are required.

The fundamental semantical concept in LISP is that of the value

of an S-expression in a given environment. An environment consists

of a so-called \association list" in which variables (atoms) and their

values (S-expressions) alternate. If a variable appears several times,

only its �rst value is signi�cant. If a variable does not appear in the

environment, then it itself is its value, so that it is in e�ect a literal

constant. (xa x(a) x((a)) F(&(x)(/(.x)x(F(+x))))) is a typical

environment. In this environment the value of x is a, the value of F

is (&(x)(/(.x)x(F(+x)))), and any other atom, for example Q, has

itself as value.

Thus the value of an atomic S-expression is obtained by searching

odd elements of the environment for that atom. What is the value of a

non-atomic S-expression, that is, of a non-empty list? In this case the

value is de�ned recursively, in terms of the values of the elements of the

S-expression in the same environment. The value of the �rst element

of the S-expression is the function, and the function's arguments are

the values of the remaining elements of the expression. Thus in LISP

the notation (fxyz) is used for what in FORTRAN would be written

f(x,y,z). Both denote the function f applied to the arguments xyz.

There are two kinds of functions: primitive functions and de�ned

functions. The ten primitive functions are the atoms . = + - * ,

' / ! and ?. A de�ned function is a three-element list (tradition-

ally called a LAMBDA expression) of the form (&vb), where v is a

list of variables. By de�nition the result of applying a de�ned func-
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(t1 f0 wa xa y(bcd) z((ef)))

Figure 3.2: A LISP Environment.

tion to arguments is the value of the body of the function b in the

environment resulting from concatenating a list of the form (variable1

argument1 variable2 argument2: : : ) and the environment of the origi-

nal S-expression, in that order. The concatenation of an n-element list

and an m-element list is de�ned to be the (n +m)-element list whose

elements are those of the �rst list followed by those of the second list.

The primitive functions are now presented. In the examples of their

use the environment in Figure 3.2 is assumed.

� Name Atom

Symbol .

Arguments 1

Explanation The result of applying this function to an argu-

ment is true or false depending on whether or not the argu-

ment is an atom.

Examples (.x) has value 1

(.y) has value 0

� Name Equal

Symbol =

Arguments 2

Explanation The result of applying this function to two argu-

ments is true or false depending on whether or not they are

the same S-expression.

Examples (=wx) has value 1

(=yz) has value 0

� Name Head/First/Take 1/CAR

Symbol +
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Arguments 1

Explanation The result of applying this function to an atom is

the atom itself. The result of applying this function to a

non-empty list is the �rst element of the list.

Examples (+x) has value a

(+y) has value b

(+z) has value (ef)

� Name Tail/Rest/Drop 1/CDR

Symbol -

Arguments 1

Explanation The result of applying this function to an atom is

the atom itself. The result of applying this function to a

non-empty list is what remains if its �rst element is erased.

Thus the tail of an (n+ 1)-element list is an n-element list.

Examples (-x) has value a

(-y) has value (cd)

(-z) has value ()

� Name Join/CONS

Symbol *

Arguments 2

Explanation If the second argument is not a list, then the result

of applying this function is the �rst argument. If the second

argument is an n-element list, then the result of applying

this function is the (n + 1)-element list whose head is the

�rst argument and whose tail is the second argument.

Examples (*xx) has value a

(*x()) has value (a)

(*xy) has value (abcd)

(*xz) has value (a(ef))

(*yz) has value ((bcd)(ef))
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� Name Output

Symbol ,

Arguments 1

Explanation The result of applying this function is its argu-

ment, in other words, this is an identity function. The side-

e�ect is to display the argument. This function is used to

display intermediate results. It is the only primitive function

that has a side-e�ect.

Examples Evaluation of (-(,(-(,(-y))))) displays (cd) and

(d) and yields value ()

� Name Quote

Symbol '

Arguments 1

Explanation The result of applying this function is the uneval-

uated argument expression.

Examples ('x) has value x

('(*xy)) has value (*xy)

� Name If-then-else

Symbol /

Arguments 3

Explanation If the �rst argument is not false, then the result

is the second argument. If the �rst argument is false, then

the result is the third argument. The argument that is not

selected is not evaluated.

Examples (/zxy) has value a

(/txy) has value a

(/fxy) has value (bcd)

Evaluation of (/tx(,y)) does not have the side-e�ect of

displaying (bcd)

� Name Eval
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Symbol !

Arguments 1

Explanation The expression that is the value of the argument is

evaluated in an empty environment. This is the only primi-

tive function that is a partial rather than a total function.

Examples (!('x)) has value x instead of a, because x is evalu-

ated in an empty environment.

(!('(.x))) has value 1

(!('(('(&(f)(f)))('(&()(f)))))) has no value.

� Name Safe Eval/Depth-limited Eval

Symbol ?

Arguments 2

Explanation The expression that is the value of the second ar-

gument is evaluated in an empty environment. If the evalua-

tion is completed within \time" given by the �rst argument,

the value returned is a list whose sole element is the value

of the value of the second argument. If the evaluation is not

completed within \time" given by the �rst argument, the

value returned is the atom ?. More precisely, the \time lim-

it" is given by the number of elements of the �rst argument,

and is zero if the �rst argument is not a list. The \time lim-

it" actually limits the depth of the call stack, more precisely,

the maximum number of re-evaluations due to de�ned func-

tions or ! or ? which have been started but have not yet

been completed. The key property of ? is that it is a total

function, i.e., is de�ned for all values of its arguments, and

that (!x) is de�ned if and only if (?tx) is not equal to ? for

all su�ciently large values of t. (See Section 3.6 for a more

precise de�nition of ?.)

Examples (?0('x)) has value (x)

(?0('(('(&(x)x))a))) has value ?

(?('(1))('(('(&(x)x))a))) has value (a)
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Atom . = + - * , ' / ! ? & :

Arguments 1 2 1 1 2 1 1 3 1 2 2 3

Figure 3.3: Atoms with Implicit Parentheses.

The argument of ' and the unselected argument of / are exceptions

to the rule that the evaluation of an S-expression that is a non-empty

list requires the previous evaluation of all its elements. When evaluation

of the elements of a list is required, this is always done one element at

a time, from left to right.

M-expressions (M stands for \meta") are S-expressions in which

the parentheses grouping together primitive functions and their argu-

ments are omitted as a convenience for the LISP programmer. See

Figure 3.3. For these purposes, & (\function/del/LAMBDA/de�ne")

is treated as if it were a primitive function with two arguments, and

: (\LET/is") is treated as if it were a primitive function with three

arguments. : is another meta-notational abbreviation, but may be

thought of as an additional primitive function. :vde denotes the value

of e in an environment in which v evaluates to the current value of d,

and :(fxyz)de denotes the value of e in an environment in which f

evaluates to (&(xyz)d). More precisely, the M-expression :vde denotes

the S-expression (('(&(v)e))d), and the M-expression :(fxyz)de de-

notes the S-expression (('(&(f)e))('(&(xyz)d))), and similarly for

functions with a di�erent number of arguments.

A " is written before a self-contained portion of an M-expression

to indicate that the convention regarding invisible parentheses and the

meaning of : does not apply within it, i.e., that there follows an S-

expression \as is".

Input to the LISP interpreter consists of a list of M-expressions.

All blanks are ignored, and comments may be inserted anywhere by

placing them between balanced ['s and ]'s, so that comments may

include other comments. Two kinds of M-expressions are read by the

interpreter: expressions to be evaluated, and others that indicate the

environment to be used for these evaluations. The initial environment

is the empty list ().
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Each M-expression is transformed into the corresponding S-expres-

sion and displayed:

(1) If the S-expression is of the form (&xe) where x is an atom and

e is an S-expression, then (xv) is concatenated with the current

environment to obtain a new environment, where v is the value

of e. Thus (&xe) is used to de�ne the value of a variable x to be

equal to the value of an S-expression e.

(2) If the S-expression is of the form (&(fxyz)d)where fxyz is one or

more atoms and d is an S-expression, then (f(&(xyz)d)) is con-

catenated with the current environment to obtain a new environ-

ment. Thus (&(fxyz)d) is used to establish function de�nitions,

in this case the function f of the variables xyz.

(3) If the S-expression is not of the form (&...) then it is evaluated

in the current environment and its value is displayed. The prim-

itive function , may cause the interpreter to display additional

S-expressions before this value.

3.3 Examples

Here are �ve elementary examples of expressions and their values.

� The M-expression *a*b*c() denotes the S-expression

(*a(*b(*c())))

whose value is the S-expression (abc).

� The M-expression +---'(abcde) denotes the S-expression

(+(-(-(-('(abcde))))))

whose value is the S-expression d.

� The M-expression *"+*"=*"-() denotes the S-expression

(*+(*=(*-())))
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whose value is the S-expression (+=-).

� The M-expression

('&(xyz)*z*y*x()abc)

denotes the S-expression

(('(&(xyz)(*z(*y(*x())))))abc)

whose value is the S-expression (cba).

� The M-expression

:(Cxy)/.xy*+x(C-xy)(C'(abcdef)'(ghijkl))

denotes the S-expression

(('(&(C)(C('(abcdef))('(ghijkl))))) ('(&(xy)(/(.x)y(*(+x)(C(-x)y)))))

whose value is the S-expression (abcdefghijkl). In this example

C is the concatenation function. It is instructive to state the

de�nition of concatenation, usually called APPEND, in words:

\Let concatenation be a function of two variables x and y de�ned

as follows: if x is an atom, then the value is y; otherwise join the

head of x to the concatenation of the tail of x with y."

In the remaining three sections of this chapter we give three serious

examples of programs written in this LISP: three increasingly sophis-

ticated versions of EVAL, the traditional de�nition of LISP in LISP,

which is of course just the LISP equivalent of a universal Turing ma-

chine. I.e., EVAL is a universal partial recursive function.

The program in Section 3.4 is quite simple; it is a stripped down

version of EVAL for our version of LISP, greatly simpli�ed because it

does not handle ! and ?. What is interesting about this example is

that it was run on the register machine LISP interpreter of Chapter 4,
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and one of the evaluations took 720 million simulated register machine

cycles!1

The program in Section 3.5 de�nes a conventional LISP with atoms

that may be any number of characters long. This example makes an

important point, which is that if our LISP with one-character atoms can

simulate a normal LISP with multi-character atoms, then the restriction

on the size of names is not of theoretical importance: any function that

can be de�ned using long names can also be de�ned using our one-

character names. In other words, Section 3.5 proves that our LISP is

computationally universal, and can de�ne any computable function. In

practice the one-character restriction is not too serious, because one

style of using names is to give them only local signi�cance, and then

names can be reused within a large function de�nition.2

The third and �nal example of LISP in LISP in this chapter, Section

3.6, is the most serious one of all. It is essentially a complete de�nition

of the semantics of our version of pure LISP, including ! and ?. Almost,

but not quite. We cheat in two ways:

(1) First of all, the top level of our LISP does not run under a time

limit, and the de�nition of LISP in LISP in Section 3.6 omits

this, and always imposes time limits on evaluations. We ought to

reserve a special internal time limit value to mean no limit; the

LISP interpreter given in Chapter 4 uses the underscore sign for

this purpose.

(2) Secondly, Section 3.6 reserves a special value, the dollar sign, as an

error value. This is of course cheating; we ought to return an atom

if there is an error, and the good value wrapped in parentheses if

there is no error, but this would complicate the de�nition of LISP

in LISP given in Section 3.6. The LISP interpreter in Chapter 4

uses an illegal S-expression consisting of a single right parenthesis

as the internal error value; no valid S-expression can begin with

a right parenthesis.

1All the other LISP interpreter runs shown in this book were run directly on a

large mainframe computer, not on a simulated register machine; see Appendix A

for details.
2Allowing long names would make it harder to program the LISP interpreter on

a register machine, which we do in Chapter 4.
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But except for these two \cheats," we take Section 3.6 to be our

o�cial de�nition of the semantics of our LISP. One can immediately

deduce from the de�nition given in Section 3.6 a number of important

details about the way our LISP achieves its \permissiveness." Most

important, extra arguments to functions are ignored, and empty lists

are supplied for missing arguments. E.g., parameters in a function de-

�nition which are not supplied with an argument expression when the

function is applied will be bound to the empty list (). This works this

way because when EVAL runs o� the end of a list of arguments, it

is reduced to the empty argument list, and head and tail applied to

this empty list will continue to give the empty list. Also if an atom

is repeated in the parameter list of a function de�nition, the binding

corresponding to the �rst occurrence will shadow the later occurrences

of the same variable. Section 3.6 is a complete de�nition of LISP se-

mantics in the sense that there are no hidden error messages and error

checks in it: it performs exactly as written on what would normally

be considered \erroneous" expressions. Of course, in our LISP there

are no erroneous expressions, only expressions that fail to have a value

because the interpreter never �nishes evaluating them: it goes into an

in�nite loop and never returns a value.

That concludes Chapter 3. What lies ahead in Chapter 4? In the

next chapter we re-write the LISP program of Section 3.6 as a register

machine program, and then compile it into an exponential diophantine

equation. The one-page LISP function de�nition in Section 3.6 becomes

a 308-instruction register machine LISP interpreter, and then a 308 +

19 + 448 + 16281 = 17056-variable equation with a left-hand side and a

right-hand side each about half a million characters long. This equation

is a LISP interpreter, and in theory it can be used to get the values of S-

expressions. In Part II the crucial property of this equation is that it has

a variable input.EXPRESSION, it has exactly one solution if the LISP

S-expression with binary representation3 input.EXPRESSION has a

value, and it has no solution if input.EXPRESSION does not have a

value. We don't care what output.VALUE is; we just want to know if

the evaluation eventually terminates.

3Recall that the binary representation of an S-expression has 8 bits per character

with the characters in reverse order (see Figures 2.4 and 3.1).
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3.4 LISP in LISP I

LISP Interpreter Run

[[[ LISP semantics defined in LISP ]]]

[ (Vse) = value of S-expression s in environment e.

If a new environment is created it is displayed. ]

& (Vse)

/.s /.es /=s+e+-e (Vs--e)

('&(f) [ f is the function ]

/=f"' +-s

/=f". .(V+-se)

/=f"+ +(V+-se)

/=f"- -(V+-se)

/=f", ,(V+-se)

/=f"= =(V+-se)(V+--se)

/=f"* *(V+-se)(V+--se)

/=f"/ /(V+-se)(V+--se)(V+---se)

(V+--f,(N+-f-se)) [ display new environment ]

(V+se)) [ evaluate function f ]

V: (&(se)(/(.s)(/(.e)s(/(=s(+e))(+(-e))(Vs(-(-e)))))(

('(&(f)(/(=f')(+(-s))(/(=f.)(.(V(+(-s))e))(/(=f+)(

+(V(+(-s))e))(/(=f-)(-(V(+(-s))e))(/(=f,)(,(V(+(-s

))e))(/(=f=)(=(V(+(-s))e)(V(+(-(-s)))e))(/(=f*)(*(

V(+(-s))e)(V(+(-(-s)))e))(/(=f/)(/(V(+(-s))e)(V(+(

-(-s)))e)(V(+(-(-(-s))))e))(V(+(-(-f)))(,(N(+(-f))

(-s)e)))))))))))))(V(+s)e))))

[ (Nxae) = new environment created from list of

variables x, list of unevaluated arguments a, and

previous environment e. ]

& (Nxae) /.xe *+x*(V+ae)(N-x-ae)

N: (&(xae)(/(.x)e(*(+x)(*(V(+a)e)(N(-x)(-a)e)))))
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[ Test function (Fx) = first atom in the S-expression x. ]

& (Fx)/.xx(F+x) [ end of definitions ]

F: (&(x)(/(.x)x(F(+x))))

(F'(((ab)c)d)) [ direct evaluation ]

expression (F('(((ab)c)d)))

value a

cycles 1435274

(V'(F'(((ab)c)d))*'F*F()) [ same thing but using V ]

expression (V('(F('(((ab)c)d))))(*('F)(*F())))

display (x(((ab)c)d)F(&(x)(/(.x)x(F(+x)))))

display (x((ab)c)x(((ab)c)d)F(&(x)(/(.x)x(F(+x)))))

display (x(ab)x((ab)c)x(((ab)c)d)F(&(x)(/(.x)x(F(+x)))))

display (xax(ab)x((ab)c)x(((ab)c)d)F(&(x)(/(.x)x(F(+x)))))

value a

cycles 719668657

End of LISP Run

Elapsed time is 2953.509742 seconds.

3.5 LISP in LISP II

LISP Interpreter Run

[[[ Normal LISP semantics defined in "Sub-Atomic" LISP ]]]

[ (Vse) = value of S-expression s in environment e.

If a new environment is created it is displayed. ]

& (Vse)

/.+s /=s+e+-e (Vs--e)

/=+s'(QUOTE) +-s
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/=+s'(ATOM) /.+(V+-se)'(T)'(NIL)

/=+s'(CAR) +(V+-se)

/=+s'(CDR) : x -(V+-se) /.x'(NIL)x

/=+s'(OUT) ,(V+-se)

/=+s'(EQ) /=(V+-se)(V+--se)'(T)'(NIL)

/=+s'(CONS) : x (V+-se) : y (V+--se) /=y'(NIL) *x() *xy

/=+s'(COND) /='(NIL)(V++-se) (V*+s--se) (V+-+-se)

: f /.++s(V+se)+s [ f is ((LAMBDA)((X)(Y))(BODY)) ]

(V+--f,(N+-f-se)) [ display new environment ]

V: (&(se)(/(.(+s))(/(=s(+e))(+(-e))(Vs(-(-e))))(/(=(+

s)('(QUOTE)))(+(-s))(/(=(+s)('(ATOM)))(/(.(+(V(+(-

s))e)))('(T))('(NIL)))(/(=(+s)('(CAR)))(+(V(+(-s))

e))(/(=(+s)('(CDR)))(('(&(x)(/(.x)('(NIL))x)))(-(V

(+(-s))e)))(/(=(+s)('(OUT)))(,(V(+(-s))e))(/(=(+s)

('(EQ)))(/(=(V(+(-s))e)(V(+(-(-s)))e))('(T))('(NIL

)))(/(=(+s)('(CONS)))(('(&(x)(('(&(y)(/(=y('(NIL))

)(*x())(*xy))))(V(+(-(-s)))e))))(V(+(-s))e))(/(=(+

s)('(COND)))(/(=('(NIL))(V(+(+(-s)))e))(V(*(+s)(-(

-s)))e)(V(+(-(+(-s))))e))(('(&(f)(V(+(-(-f)))(,(N(

+(-f))(-s)e)))))(/(.(+(+s)))(V(+s)e)(+s)))))))))))

))

[ (Nxae) = new environment created from list of

variables x, list of unevaluated arguments a, and

previous environment e. ]

& (Nxae) /.xe *+x*(V+ae)(N-x-ae)

N: (&(xae)(/(.x)e(*(+x)(*(V(+a)e)(N(-x)(-a)e)))))

[ FIRSTATOM

( LAMBDA ( X )

( COND (( ATOM X ) X )

(( QUOTE T ) ( FIRSTATOM ( CAR X )))))

]

& F '

((FIRSTATOM)
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((LAMBDA) ((X))

((COND) (((ATOM) (X)) (X))

(((QUOTE) (T)) ((FIRSTATOM) ((CAR) (X))))))

)

expression ('((FIRSTATOM)((LAMBDA)((X))((COND)(((ATOM)(X))(X)

)(((QUOTE)(T))((FIRSTATOM)((CAR)(X))))))))

F: ((FIRSTATOM)((LAMBDA)((X))((COND)(((ATOM)(X))(X))(

((QUOTE)(T))((FIRSTATOM)((CAR)(X)))))))

[ APPEND

( LAMBDA ( X Y ) ( COND (( ATOM X ) Y )

(( QUOTE T ) ( CONS ( CAR X )

( APPEND ( CDR X ) Y )))))

]

& C '

((APPEND)

((LAMBDA) ((X)(Y)) ((COND) (((ATOM) (X)) (Y))

(((QUOTE) (T)) ((CONS) ((CAR) (X))

((APPEND) ((CDR) (X)) (Y))))))

)

expression ('((APPEND)((LAMBDA)((X)(Y))((COND)(((ATOM)(X))(Y)

)(((QUOTE)(T))((CONS)((CAR)(X))((APPEND)((CDR)(X))

(Y))))))))

C: ((APPEND)((LAMBDA)((X)(Y))((COND)(((ATOM)(X))(Y))(

((QUOTE)(T))((CONS)((CAR)(X))((APPEND)((CDR)(X))(Y

)))))))

(V'

((FIRSTATOM) ((QUOTE) ((((A)(B))(C))(D))))

F)

expression (V('((FIRSTATOM)((QUOTE)((((A)(B))(C))(D)))))F)

display ((X)((((A)(B))(C))(D))(FIRSTATOM)((LAMBDA)((X))((C

OND)(((ATOM)(X))(X))(((QUOTE)(T))((FIRSTATOM)((CAR

)(X)))))))
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display ((X)(((A)(B))(C))(X)((((A)(B))(C))(D))(FIRSTATOM)(

(LAMBDA)((X))((COND)(((ATOM)(X))(X))(((QUOTE)(T))(

(FIRSTATOM)((CAR)(X)))))))

display ((X)((A)(B))(X)(((A)(B))(C))(X)((((A)(B))(C))(D))(

FIRSTATOM)((LAMBDA)((X))((COND)(((ATOM)(X))(X))(((

QUOTE)(T))((FIRSTATOM)((CAR)(X)))))))

display ((X)(A)(X)((A)(B))(X)(((A)(B))(C))(X)((((A)(B))(C)

)(D))(FIRSTATOM)((LAMBDA)((X))((COND)(((ATOM)(X))(

X))(((QUOTE)(T))((FIRSTATOM)((CAR)(X)))))))

value (A)

(V'

((APPEND) ((QUOTE)((A)(B)(C))) ((QUOTE)((D)(E)(F))))

C)

expression (V('((APPEND)((QUOTE)((A)(B)(C)))((QUOTE)((D)(E)(F

)))))C)

display ((X)((A)(B)(C))(Y)((D)(E)(F))(APPEND)((LAMBDA)((X)

(Y))((COND)(((ATOM)(X))(Y))(((QUOTE)(T))((CONS)((C

AR)(X))((APPEND)((CDR)(X))(Y)))))))

display ((X)((B)(C))(Y)((D)(E)(F))(X)((A)(B)(C))(Y)((D)(E)

(F))(APPEND)((LAMBDA)((X)(Y))((COND)(((ATOM)(X))(Y

))(((QUOTE)(T))((CONS)((CAR)(X))((APPEND)((CDR)(X)

)(Y)))))))

display ((X)((C))(Y)((D)(E)(F))(X)((B)(C))(Y)((D)(E)(F))(X

)((A)(B)(C))(Y)((D)(E)(F))(APPEND)((LAMBDA)((X)(Y)

)((COND)(((ATOM)(X))(Y))(((QUOTE)(T))((CONS)((CAR)

(X))((APPEND)((CDR)(X))(Y)))))))

display ((X)(NIL)(Y)((D)(E)(F))(X)((C))(Y)((D)(E)(F))(X)((

B)(C))(Y)((D)(E)(F))(X)((A)(B)(C))(Y)((D)(E)(F))(A

PPEND)((LAMBDA)((X)(Y))((COND)(((ATOM)(X))(Y))(((Q

UOTE)(T))((CONS)((CAR)(X))((APPEND)((CDR)(X))(Y)))

))))

value ((A)(B)(C)(D)(E)(F))

End of LISP Run

Elapsed time is 16.460641 seconds.
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3.6 LISP in LISP III

LISP Interpreter Run

[[[ LISP semantics defined in LISP ]]]

[

Permissive LISP:

head & tail of atom = atom,

join of x with nonzero atom = x,

initially all atoms evaluate to self,

only depth exceeded failure!

(Vsed) =

value of S-expression s in environment e within depth d.

If a new environment is created it is displayed.

d is a natural number which must be decremented

at each call. And if it reaches zero, evaluation aborts.

If depth is exceeded, V returns a special failure value $.

Evaluation cannot fail any other way!

Normally, when get value v, if bad will return it as is:

/=$vv

To stop unwinding,

one must convert $ to ? & wrap good v in ()'s.

]

& (Vsed)

/. s : (Ae) /.e s /=s+e+-e (A--e)

[ A is "Assoc" ]

(Ae) [ evaluate atom; if not in e, evals to self ]

: f (V+sed) [ evaluate the function f ]

/=$ff [ if evaluation of function failed, give up ]

/=f"' +-s [ do "quote" ]

/=f"/ : p (V+-sed) /=$pp /=0p (V+---sed) (V+--sed)

[ do "if" ]

: (Wl) /.ll : x (V+led) /=$xx : y (W-l) /=$yy *xy

[ W is "Evalst" ]

: a (W-s) [ a is the list of argument values ]

/=$aa [ evaluation of arguments failed, give up ]

: x +a [ pick up first argument ]
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: y +-a [ pick up second argument ]

/=f". .x [ do "atom" ]

/=f"+ +x [ do "head" ]

/=f"- -x [ do "tail" ]

/=f", ,x [ do "out" ]

/=f"= =xy [ do "eq" ]

/=f"* *xy [ do "join" ]

/.d $ [ fail if depth already zero ]

: d -d [ decrement depth ]

/=f"! (Vx()d) [ do "eval"; use fresh environment ]

/=f"? [ do "depth-limited eval" ]

: (Lij) /.i1 /.j0 (L-i-j)

[ natural # i is less than or equal to j ]

/(Ldx) : v (Vy()d) /=$vv *v()

[ old depth more limiting; keep unwinding ]

: v (Vy()x) /=$v"? *v()

[ new depth limit more limiting;

stop unwinding ]

[ do function definition ]

: (Bxa) /.xe *+x*+a(B-x-a)

[ B is "Bind" ]

(V+--f,(B+-fa)d) [ display new environment ]

V: (&(sed)(/(.s)(('(&(A)(Ae)))('(&(e)(/(.e)s(/(=s(+e)

)(+(-e))(A(-(-e))))))))(('(&(f)(/(=$f)f(/(=f')(+(-

s))(/(=f/)(('(&(p)(/(=$p)p(/(=0p)(V(+(-(-(-s))))ed

)(V(+(-(-s)))ed)))))(V(+(-s))ed))(('(&(W)(('(&(a)(

/(=$a)a(('(&(x)(('(&(y)(/(=f.)(.x)(/(=f+)(+x)(/(=f

-)(-x)(/(=f,)(,x)(/(=f=)(=xy)(/(=f*)(*xy)(/(.d)$((

'(&(d)(/(=f!)(Vx()d)(/(=f?)(('(&(L)(/(Ldx)(('(&(v)

(/(=$v)v(*v()))))(Vy()d))(('(&(v)(/(=$v)?(*v()))))

(Vy()x)))))('(&(ij)(/(.i)1(/(.j)0(L(-i)(-j)))))))(

('(&(B)(V(+(-(-f)))(,(B(+(-f))a))d)))('(&(xa)(/(.x

)e(*(+x)(*(+a)(B(-x)(-a))))))))))))(-d)))))))))))(

+(-a)))))(+a)))))(W(-s)))))('(&(l)(/(.l)l(('(&(x)(

/(=$x)x(('(&(y)(/(=$y)y(*xy))))(W(-l))))))(V(+l)ed

)))))))))))(V(+s)ed))))
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[ Test function (Cxy) = concatenate list x and list y. ]

[ Define environment for concatenation. ]

& E '( C &(xy) /.xy *+x(C-xy) )

expression ('(C(&(xy)(/(.x)y(*(+x)(C(-x)y))))))

E: (C(&(xy)(/(.x)y(*(+x)(C(-x)y)))))

(V '(C'(ab)'(cd)) E '())

expression (V('(C('(ab))('(cd))))E('()))

value $

(V '(C'(ab)'(cd)) E '(1))

expression (V('(C('(ab))('(cd))))E('(1)))

display (x(ab)y(cd)C(&(xy)(/(.x)y(*(+x)(C(-x)y)))))

value $

(V '(C'(ab)'(cd)) E '(11))

expression (V('(C('(ab))('(cd))))E('(11)))

display (x(ab)y(cd)C(&(xy)(/(.x)y(*(+x)(C(-x)y)))))

display (x(b)y(cd)x(ab)y(cd)C(&(xy)(/(.x)y(*(+x)(C(-x)y)))

))

value $

(V '(C'(ab)'(cd)) E '(111))

expression (V('(C('(ab))('(cd))))E('(111)))

display (x(ab)y(cd)C(&(xy)(/(.x)y(*(+x)(C(-x)y)))))

display (x(b)y(cd)x(ab)y(cd)C(&(xy)(/(.x)y(*(+x)(C(-x)y)))

))

display (x()y(cd)x(b)y(cd)x(ab)y(cd)C(&(xy)(/(.x)y(*(+x)(C

(-x)y)))))
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value (abcd)

End of LISP Run

Elapsed time is 21.745667 seconds.
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Chapter 4

The LISP Interpreter EVAL

In this chapter we convert the de�nition of LISP in LISP given in

Section 3.6 into a register machine program. Then we compile this

register machine program into an exponential diophantine equation.

4.1 Register Machine Pseudo-Instructio-

ns

The �rst step to program an interpreter for our version of pure LISP

is to write subroutines for breaking S-expressions apart (SPLIT) and

for putting them back together again (JOIN). The next step is to use

SPLIT and JOIN to write routines that push and pop the interpreter

stack. Then we can raise the level of discourse by de�ning register

machine pseudo-instructions which are expanded by the assembler into

calls to these routines; i.e., we extend register machine language with

pseudo-machine instructions which expand into several real machine in-

structions. Thus we have four \microcode" subroutines: SPLIT, JOIN,

PUSH, and POP. SPLIT and JOIN are leaf routines, and PUSH and

POP call SPLIT and JOIN.

Figure 4.1 is a table giving the twelve register machine pseudo-

instructions.

Now a few words about register usage; there are only 19 registers!

First of all, the S-expression to be evaluated is input in EXPRESSION,

and the value of this S-expression is output in VALUE. There are three

103
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* Comment Comment is ignored; for documentation only.

R REGISTER Declare the name of a machine register.

L LABEL Declare the name of the next instruction.

SPLIT T1,T2,S Put the head and tail of S into T1 and T2.

HD T,S Put the head of S into T.

TL T,S Put the tail of S into T.

EMPTY T Set T to be the empty list ().

ATOM S,L Branch to L if S contains an atom.

JN T,S1,S2 Join S1 to S2 and put the result into T.

PUSH S Push S into the STACK.

(This is equivalent to JN STACK,S,STACK.)

POP T Pop T from the STACK.

(This is equivalent to POPL T,STACK.)

POPL T,S Pop T from the list S:

put the head of S into T and then

replace S by its tail.

Figure 4.1: Register Machine Pseudo-Instructions. In the table

above source registers all start with an S, and target registers with a T.

\Head," \tail," and \join" refer to the LISP primitive functions applied

to the binary representations of S-expressions, as de�ned in Figure 2.4.
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large permanent data structures used by the interpreter:

(1) the association list ALIST which contains all variable bindings,

(2) the interpreter STACK used for saving and restoring information

when the interpreter calls itself, and

(3) the current remaining DEPTH limit on evaluations.

All other registers are either temporary scratch registers used by the

interpreter (FUNCTION, ARGUMENTS, VARIABLES, X, and Y),

or hidden registers used by the microcode rather than directly by the

interpreter. These hidden registers include:

(1) the two in-boxes and two out-boxes for micro-routines: SOURCE,

SOURCE2, TARGET, and TARGET2,

(2) the two scratch registers for pseudo-instruction expansion and

micro-routines: WORK and PARENS, and

(3) the three registers for return addresses from subroutine calls:

LINKREG, LINKREG2, and LINKREG3

Section 4.2 is a complete listing of the register machine pseudo-code

for the interpreter, and the 308 real register machine instructions that

are generated by the assembler from the pseudo-code. A few words of

explanation: Register machine pseudo-instructions that declare a reg-

ister name or instruction label start 
ush left, and so do comments.

Other pseudo-instructions are indented 2 spaces. The operands of

pseudo-instructions are always separated by commas. The real regis-

ter machine instructions generated from these pseudo-instructions are

indented 6 spaces. Their operands are separated by spaces instead of

commas. And real instructions always start with a label and a colon.

Section 4.3 is the summary information produced at the end of the

compilation of the interpreter into an exponential diophantine equa-

tion, including the name of each of the 17056 variables in the equation.

Section 4.4 is the �rst �ve thousand characters of the left-hand side of

the resulting equation, and Section 4.5 is the last �ve thousand char-

acters of the right-hand side of the equation. Unfortunately we are
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forced to only give these excerpts; the full compiler log and equation

are available from the author.1

4.2 EVAL in Register Machine Language

*

* The LISP Machine! ..........................................

*

* input in EXPRESSION, output in VALUE

EMPTY ALIST initial association list

L1: SET ALIST C')'

L2: LEFT ALIST C'('

SET STACK,ALIST empty stack

L3: SET STACK ALIST

SET DEPTH,C'_' no depth limit

L4: SET DEPTH C'_'

JUMP LINKREG,EVAL evaluate expression

L5: JUMP LINKREG EVAL

HALT finished !

L6: HALT

*

* Recursive Return ...........................................

*

RETURNQ LABEL

SET VALUE,C'?'

RETURNQ: SET VALUE C'?'

GOTO UNWIND

L8: GOTO UNWIND

*

RETURN0 LABEL

SET VALUE,C'0'

RETURN0: SET VALUE C'0'

GOTO UNWIND

L10: GOTO UNWIND

*

RETURN1 LABEL

SET VALUE,C'1'

1\The Complete Arithmetization of EVAL," November 19th, 1987, 294 pp.
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RETURN1: SET VALUE C'1'

*

UNWIND LABEL

POP LINKREG pop return address

UNWIND: JUMP LINKREG2 POP_ROUTINE

L13: SET LINKREG TARGET

GOBACK LINKREG

L14: GOBACK LINKREG

*

* Recursive Call .............................................

*

EVAL LABEL

PUSH LINKREG push return address

EVAL: SET SOURCE LINKREG

L16: JUMP LINKREG2 PUSH_ROUTINE

ATOM EXPRESSION,EXPRESSION_IS_ATOM

L17: NEQ EXPRESSION C'(' EXPRESSION_IS_ATOM

L18: SET WORK EXPRESSION

L19: RIGHT WORK

L20: EQ WORK C')' EXPRESSION_IS_ATOM

GOTO EXPRESSION_ISNT_ATOM

L21: GOTO EXPRESSION_ISNT_ATOM

*

EXPRESSION_IS_ATOM LABEL

SET X,ALIST copy alist

EXPRESSION_IS_ATOM: SET X ALIST

ALIST_SEARCH LABEL

SET VALUE,EXPRESSION variable not in alist

ALIST_SEARCH: SET VALUE EXPRESSION

ATOM X,UNWIND evaluates to self

L24: NEQ X C'(' UNWIND

L25: SET WORK X

L26: RIGHT WORK

L27: EQ WORK C')' UNWIND

POPL Y,X pick up variable

L28: SET SOURCE X

L29: JUMP LINKREG3 SPLIT_ROUTINE

L30: SET Y TARGET

L31: SET X TARGET2
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POPL VALUE,X pick up its value

L32: SET SOURCE X

L33: JUMP LINKREG3 SPLIT_ROUTINE

L34: SET VALUE TARGET

L35: SET X TARGET2

EQ EXPRESSION,Y,UNWIND right one ?

L36: EQ EXPRESSION Y UNWIND

GOTO ALIST_SEARCH

L37: GOTO ALIST_SEARCH

*

EXPRESSION_ISNT_ATOM LABEL expression is not atom

SPLIT EXPRESSION,ARGUMENTS,EXPRESSION

* split into function & arguments

EXPRESSION_ISNT_ATOM: SET SOURCE EXPRESSION

L39: JUMP LINKREG3 SPLIT_ROUTINE

L40: SET EXPRESSION TARGET

L41: SET ARGUMENTS TARGET2

PUSH ARGUMENTS push arguments

L42: SET SOURCE ARGUMENTS

L43: JUMP LINKREG2 PUSH_ROUTINE

JUMP LINKREG,EVAL evaluate function

L44: JUMP LINKREG EVAL

POP ARGUMENTS pop arguments

L45: JUMP LINKREG2 POP_ROUTINE

L46: SET ARGUMENTS TARGET

EQ VALUE,C')',UNWIND abort ?

L47: EQ VALUE C')' UNWIND

SET FUNCTION,VALUE remember value of function

L48: SET FUNCTION VALUE

*

* Quote ......................................................

*

NEQ FUNCTION,C'''',NOT_QUOTE

L49: NEQ FUNCTION C'''' NOT_QUOTE

* ' Quote

HD VALUE,ARGUMENTS return argument "as is"

L50: SET SOURCE ARGUMENTS

L51: JUMP LINKREG3 SPLIT_ROUTINE

L52: SET VALUE TARGET
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GOTO UNWIND

L53: GOTO UNWIND

*

NOT_QUOTE LABEL

*

* If .........................................................

*

NEQ FUNCTION,C'/',NOT_IF_THEN_ELSE

NOT_QUOTE: NEQ FUNCTION C'/' NOT_IF_THEN_ELSE

* / If

POPL EXPRESSION,ARGUMENTS pick up "if" clause

L55: SET SOURCE ARGUMENTS

L56: JUMP LINKREG3 SPLIT_ROUTINE

L57: SET EXPRESSION TARGET

L58: SET ARGUMENTS TARGET2

PUSH ARGUMENTS remember "then" & "else" clauses

L59: SET SOURCE ARGUMENTS

L60: JUMP LINKREG2 PUSH_ROUTINE

JUMP LINKREG,EVAL evaluate predicate

L61: JUMP LINKREG EVAL

POP ARGUMENTS pick up "then" & "else" clauses

L62: JUMP LINKREG2 POP_ROUTINE

L63: SET ARGUMENTS TARGET

EQ VALUE,C')',UNWIND abort ?

L64: EQ VALUE C')' UNWIND

NEQ VALUE,C'0',THEN_CLAUSE predicate considered true

* if not 0

L65: NEQ VALUE C'0' THEN_CLAUSE

TL ARGUMENTS,ARGUMENTS if false, skip "then" clause

L66: SET SOURCE ARGUMENTS

L67: JUMP LINKREG3 SPLIT_ROUTINE

L68: SET ARGUMENTS TARGET2

THEN_CLAUSE LABEL

HD EXPRESSION,ARGUMENTS pick up "then" or "else" clause

THEN_CLAUSE: SET SOURCE ARGUMENTS

L70: JUMP LINKREG3 SPLIT_ROUTINE

L71: SET EXPRESSION TARGET

JUMP LINKREG,EVAL evaluate it

L72: JUMP LINKREG EVAL
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GOTO UNWIND return value "as is"

L73: GOTO UNWIND

*

NOT_IF_THEN_ELSE LABEL

*

* Evaluate Arguments .........................................

*

PUSH FUNCTION

NOT_IF_THEN_ELSE: SET SOURCE FUNCTION

L75: JUMP LINKREG2 PUSH_ROUTINE

JUMP LINKREG,EVALST

L76: JUMP LINKREG EVALST

POP FUNCTION

L77: JUMP LINKREG2 POP_ROUTINE

L78: SET FUNCTION TARGET

EQ VALUE,C')',UNWIND abort ?

L79: EQ VALUE C')' UNWIND

SET ARGUMENTS,VALUE remember argument values

L80: SET ARGUMENTS VALUE

SPLIT X,Y,ARGUMENTS pick up first argument in x

L81: SET SOURCE ARGUMENTS

L82: JUMP LINKREG3 SPLIT_ROUTINE

L83: SET X TARGET

L84: SET Y TARGET2

HD Y,Y & second argument in y

L85: SET SOURCE Y

L86: JUMP LINKREG3 SPLIT_ROUTINE

L87: SET Y TARGET

*

* Atom & Equal ...............................................

*

NEQ FUNCTION,C'.',NOT_ATOM

L88: NEQ FUNCTION C'.' NOT_ATOM

* . Atom

ATOM X,RETURN1 if argument is atomic return true

L89: NEQ X C'(' RETURN1

L90: SET WORK X

L91: RIGHT WORK

L92: EQ WORK C')' RETURN1
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GOTO RETURN0 otherwise return nil

L93: GOTO RETURN0

*

NOT_ATOM LABEL

*

NEQ FUNCTION,C'=',NOT_EQUAL

NOT_ATOM: NEQ FUNCTION C'=' NOT_EQUAL

* = Equal

COMPARE LABEL

NEQ X,Y,RETURN0 not equal !

COMPARE: NEQ X Y RETURN0

RIGHT X

L96: RIGHT X

RIGHT Y

L97: RIGHT Y

NEQ X,X'00',COMPARE

L98: NEQ X X'00' COMPARE

GOTO RETURN1 equal !

L99: GOTO RETURN1

*

NOT_EQUAL LABEL

*

* Head, Tail & Join ..........................................

*

SPLIT TARGET,TARGET2,X get head & tail of argument

NOT_EQUAL: SET SOURCE X

L101: JUMP LINKREG3 SPLIT_ROUTINE

SET VALUE,TARGET

L102: SET VALUE TARGET

EQ FUNCTION,C'+',UNWIND + pick Head

L103: EQ FUNCTION C'+' UNWIND

SET VALUE,TARGET2

L104: SET VALUE TARGET2

EQ FUNCTION,C'-',UNWIND - pick Tail

L105: EQ FUNCTION C'-' UNWIND

*

JN VALUE,X,Y * Join first argument

* to second argument

L106: SET SOURCE X
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L107: SET SOURCE2 Y

L108: JUMP LINKREG3 JN_ROUTINE

L109: SET VALUE TARGET

EQ FUNCTION,C'*',UNWIND

L110: EQ FUNCTION C'*' UNWIND

*

* Output .....................................................

*

NEQ FUNCTION,C',',NOT_OUTPUT

L111: NEQ FUNCTION C',' NOT_OUTPUT

* , Output

OUT X write argument

L112: OUT X

SET VALUE,X identity function!

L113: SET VALUE X

GOTO UNWIND

L114: GOTO UNWIND

*

NOT_OUTPUT LABEL

*

* Decrement Depth Limit ......................................

*

EQ DEPTH,C'_',NO_LIMIT

NOT_OUTPUT: EQ DEPTH C'_' NO_LIMIT

SET VALUE,C')'

L116: SET VALUE C')'

ATOM DEPTH,UNWIND if limit exceeded, unwind

L117: NEQ DEPTH C'(' UNWIND

L118: SET WORK DEPTH

L119: RIGHT WORK

L120: EQ WORK C')' UNWIND

NO_LIMIT LABEL

PUSH DEPTH push limit before decrementing it

NO_LIMIT: SET SOURCE DEPTH

L122: JUMP LINKREG2 PUSH_ROUTINE

TL DEPTH,DEPTH decrement it

L123: SET SOURCE DEPTH

L124: JUMP LINKREG3 SPLIT_ROUTINE

L125: SET DEPTH TARGET2
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*

* Eval .......................................................

*

NEQ FUNCTION,C'!',NOT_EVAL

L126: NEQ FUNCTION C'!' NOT_EVAL

* ! Eval

SET EXPRESSION,X pick up argument

L127: SET EXPRESSION X

PUSH ALIST push alist

L128: SET SOURCE ALIST

L129: JUMP LINKREG2 PUSH_ROUTINE

EMPTY ALIST fresh environment

L130: SET ALIST C')'

L131: LEFT ALIST C'('

JUMP LINKREG,EVAL evaluate argument again

L132: JUMP LINKREG EVAL

POP ALIST restore old environment

L133: JUMP LINKREG2 POP_ROUTINE

L134: SET ALIST TARGET

POP DEPTH restore old depth limit

L135: JUMP LINKREG2 POP_ROUTINE

L136: SET DEPTH TARGET

GOTO UNWIND

L137: GOTO UNWIND

*

NOT_EVAL LABEL

*

* Evald ......................................................

*

NEQ FUNCTION,C'?',NOT_EVALD

NOT_EVAL: NEQ FUNCTION C'?' NOT_EVALD

* ? Eval depth limited

SET VALUE,X pick up first argument

L139: SET VALUE X

SET EXPRESSION,Y pick up second argument

L140: SET EXPRESSION Y

* First argument of ? is in VALUE and

* second argument of ? is in EXPRESSION.

* First argument is new depth limit and
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* second argument is expression to safely eval.

PUSH ALIST save old environment

L141: SET SOURCE ALIST

L142: JUMP LINKREG2 PUSH_ROUTINE

EMPTY ALIST fresh environment

L143: SET ALIST C')'

L144: LEFT ALIST C'('

* Decide whether old or new depth restriction is stronger

SET X,DEPTH pick up old depth limit

L145: SET X DEPTH

SET Y,VALUE pick up new depth limit

L146: SET Y VALUE

EQ X,C'_',NEW_DEPTH no previous limit,

* so switch to new one

L147: EQ X C'_' NEW_DEPTH

CHOOSE LABEL

ATOM X,OLD_DEPTH old limit smaller, so keep it

CHOOSE: NEQ X C'(' OLD_DEPTH

L149: SET WORK X

L150: RIGHT WORK

L151: EQ WORK C')' OLD_DEPTH

ATOM Y,NEW_DEPTH new limit smaller, so switch

L152: NEQ Y C'(' NEW_DEPTH

L153: SET WORK Y

L154: RIGHT WORK

L155: EQ WORK C')' NEW_DEPTH

TL X,X

L156: SET SOURCE X

L157: JUMP LINKREG3 SPLIT_ROUTINE

L158: SET X TARGET2

TL Y,Y

L159: SET SOURCE Y

L160: JUMP LINKREG3 SPLIT_ROUTINE

L161: SET Y TARGET2

GOTO CHOOSE

L162: GOTO CHOOSE

*

NEW_DEPTH LABEL NEW depth limit more restrictive

SET DEPTH,VALUE pick up new depth limit
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NEW_DEPTH: SET DEPTH VALUE

NEQ DEPTH,C'_',DEPTH_OKAY

L164: NEQ DEPTH C'_' DEPTH_OKAY

SET DEPTH,C'0' only top level has no depth limit

L165: SET DEPTH C'0'

DEPTH_OKAY LABEL

JUMP LINKREG,EVAL evaluate second argument

* of ? again

DEPTH_OKAY: JUMP LINKREG EVAL

POP ALIST restore environment

L167: JUMP LINKREG2 POP_ROUTINE

L168: SET ALIST TARGET

POP DEPTH restore depth limit

L169: JUMP LINKREG2 POP_ROUTINE

L170: SET DEPTH TARGET

EQ VALUE,C')',RETURNQ convert "no value" to ?

L171: EQ VALUE C')' RETURNQ

WRAP LABEL

EMPTY SOURCE2

WRAP: SET SOURCE2 C')'

L173: LEFT SOURCE2 C'('

JN VALUE,VALUE,SOURCE2 wrap good value in parentheses

L174: SET SOURCE VALUE

L175: JUMP LINKREG3 JN_ROUTINE

L176: SET VALUE TARGET

GOTO UNWIND

L177: GOTO UNWIND

*

OLD_DEPTH LABEL OLD depth limit more restrictive

JUMP LINKREG,EVAL evaluate second argument

* of ? again

OLD_DEPTH: JUMP LINKREG EVAL

POP ALIST restore environment

L179: JUMP LINKREG2 POP_ROUTINE

L180: SET ALIST TARGET

POP DEPTH restore depth limit

L181: JUMP LINKREG2 POP_ROUTINE

L182: SET DEPTH TARGET

EQ VALUE,C')',UNWIND if bad value, keep unwinding
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L183: EQ VALUE C')' UNWIND

GOTO WRAP wrap good value in parentheses

L184: GOTO WRAP

*

NOT_EVALD LABEL

*

* Defined Function ...........................................

*

* Bind

*

TL FUNCTION,FUNCTION throw away &

NOT_EVALD: SET SOURCE FUNCTION

L186: JUMP LINKREG3 SPLIT_ROUTINE

L187: SET FUNCTION TARGET2

POPL VARIABLES,FUNCTION pick up variables

* from function definition

L188: SET SOURCE FUNCTION

L189: JUMP LINKREG3 SPLIT_ROUTINE

L190: SET VARIABLES TARGET

L191: SET FUNCTION TARGET2

PUSH ALIST save environment

L192: SET SOURCE ALIST

L193: JUMP LINKREG2 PUSH_ROUTINE

JUMP LINKREG,BIND new environment

* (preserves function)

L194: JUMP LINKREG BIND

*

* Evaluate Body

*

HD EXPRESSION,FUNCTION pick up body of function

L195: SET SOURCE FUNCTION

L196: JUMP LINKREG3 SPLIT_ROUTINE

L197: SET EXPRESSION TARGET

JUMP LINKREG,EVAL evaluate body

L198: JUMP LINKREG EVAL

*

* Unbind

*

POP ALIST restore environment
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L199: JUMP LINKREG2 POP_ROUTINE

L200: SET ALIST TARGET

POP DEPTH restore depth limit

L201: JUMP LINKREG2 POP_ROUTINE

L202: SET DEPTH TARGET

GOTO UNWIND

L203: GOTO UNWIND

*

* Evalst .....................................................

*

* input in ARGUMENTS, output in VALUE

EVALST LABEL loop to eval arguments

PUSH LINKREG push return address

EVALST: SET SOURCE LINKREG

L205: JUMP LINKREG2 PUSH_ROUTINE

SET VALUE,ARGUMENTS null argument list has

L206: SET VALUE ARGUMENTS

ATOM ARGUMENTS,UNWIND null list of values

L207: NEQ ARGUMENTS C'(' UNWIND

L208: SET WORK ARGUMENTS

L209: RIGHT WORK

L210: EQ WORK C')' UNWIND

POPL EXPRESSION,ARGUMENTS pick up next argument

L211: SET SOURCE ARGUMENTS

L212: JUMP LINKREG3 SPLIT_ROUTINE

L213: SET EXPRESSION TARGET

L214: SET ARGUMENTS TARGET2

PUSH ARGUMENTS push remaining arguments

L215: SET SOURCE ARGUMENTS

L216: JUMP LINKREG2 PUSH_ROUTINE

JUMP LINKREG,EVAL evaluate first argument

L217: JUMP LINKREG EVAL

POP ARGUMENTS pop remaining arguments

L218: JUMP LINKREG2 POP_ROUTINE

L219: SET ARGUMENTS TARGET

EQ VALUE,C')',UNWIND abort ?

L220: EQ VALUE C')' UNWIND

PUSH VALUE push value of first argument

L221: SET SOURCE VALUE
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L222: JUMP LINKREG2 PUSH_ROUTINE

JUMP LINKREG,EVALST evaluate remaining arguments

L223: JUMP LINKREG EVALST

POP X pop value of first argument

L224: JUMP LINKREG2 POP_ROUTINE

L225: SET X TARGET

EQ VALUE,C')',UNWIND abort ?

L226: EQ VALUE C')' UNWIND

JN VALUE,X,VALUE add first value to rest

L227: SET SOURCE X

L228: SET SOURCE2 VALUE

L229: JUMP LINKREG3 JN_ROUTINE

L230: SET VALUE TARGET

GOTO UNWIND

L231: GOTO UNWIND

*

* Bind .......................................................

*

* input in VARIABLES, ARGUMENTS, ALIST, output in ALIST

BIND LABEL must not ruin FUNCTION

PUSH LINKREG

BIND: SET SOURCE LINKREG

L233: JUMP LINKREG2 PUSH_ROUTINE

ATOM VARIABLES,UNWIND any variables left to bind?

L234: NEQ VARIABLES C'(' UNWIND

L235: SET WORK VARIABLES

L236: RIGHT WORK

L237: EQ WORK C')' UNWIND

POPL X,VARIABLES pick up variable

L238: SET SOURCE VARIABLES

L239: JUMP LINKREG3 SPLIT_ROUTINE

L240: SET X TARGET

L241: SET VARIABLES TARGET2

PUSH X save it

L242: SET SOURCE X

L243: JUMP LINKREG2 PUSH_ROUTINE

POPL X,ARGUMENTS pick up argument value

L244: SET SOURCE ARGUMENTS

L245: JUMP LINKREG3 SPLIT_ROUTINE
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L246: SET X TARGET

L247: SET ARGUMENTS TARGET2

PUSH X save it

L248: SET SOURCE X

L249: JUMP LINKREG2 PUSH_ROUTINE

JUMP LINKREG,BIND

L250: JUMP LINKREG BIND

POP X pop value

L251: JUMP LINKREG2 POP_ROUTINE

L252: SET X TARGET

JN ALIST,X,ALIST (value ALIST)

L253: SET SOURCE X

L254: SET SOURCE2 ALIST

L255: JUMP LINKREG3 JN_ROUTINE

L256: SET ALIST TARGET

POP X pop variable

L257: JUMP LINKREG2 POP_ROUTINE

L258: SET X TARGET

JN ALIST,X,ALIST (variable value ALIST)

L259: SET SOURCE X

L260: SET SOURCE2 ALIST

L261: JUMP LINKREG3 JN_ROUTINE

L262: SET ALIST TARGET

GOTO UNWIND

L263: GOTO UNWIND

*

* Push & Pop Stack ...........................................

*

PUSH_ROUTINE LABEL input in source

JN STACK,SOURCE,STACK stack = join source to stack

PUSH_ROUTINE: SET SOURCE2 STACK

L265: JUMP LINKREG3 JN_ROUTINE

L266: SET STACK TARGET

GOBACK LINKREG2

L267: GOBACK LINKREG2

*

POP_ROUTINE LABEL output in target

SPLIT TARGET,STACK,STACK target = head of stack

POP_ROUTINE: SET SOURCE STACK
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L269: JUMP LINKREG3 SPLIT_ROUTINE

L270: SET STACK TARGET2

GOBACK LINKREG2 stack = tail of stack

L271: GOBACK LINKREG2

*

* Split S-exp into Head & Tail ...............................

*

SPLIT_ROUTINE LABEL input in source,

* output in target & target2

SET TARGET,SOURCE is argument atomic ?

SPLIT_ROUTINE: SET TARGET SOURCE

SET TARGET2,SOURCE if so, its head & its tail

L273: SET TARGET2 SOURCE

ATOM SOURCE,SPLIT_EXIT are just the argument itself

L274: NEQ SOURCE C'(' SPLIT_EXIT

L275: SET WORK SOURCE

L276: RIGHT WORK

L277: EQ WORK C')' SPLIT_EXIT

SET TARGET,X'00'

L278: SET TARGET X'00'

SET TARGET2,X'00'

L279: SET TARGET2 X'00'

*

RIGHT SOURCE skip initial ( of source

L280: RIGHT SOURCE

SET WORK,X'00'

L281: SET WORK X'00'

SET PARENS,X'00' p = 0

L282: SET PARENS X'00'

*

COPY_HD LABEL

NEQ SOURCE,C'(',NOT_LPAR if (

COPY_HD: NEQ SOURCE C'(' NOT_LPAR

LEFT PARENS,C'1' then p = p + 1

L284: LEFT PARENS C'1'

NOT_LPAR LABEL

NEQ SOURCE,C')',NOT_RPAR if )

NOT_LPAR: NEQ SOURCE C')' NOT_RPAR

RIGHT PARENS then p = p - 1
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L286: RIGHT PARENS

NOT_RPAR LABEL

LEFT WORK,SOURCE copy head of source

NOT_RPAR: LEFT WORK SOURCE

EQ PARENS,C'1',COPY_HD continue if p not = 0

L288: EQ PARENS C'1' COPY_HD

*

REVERSE_HD LABEL

LEFT TARGET,WORK reverse result into target

REVERSE_HD: LEFT TARGET WORK

NEQ WORK,X'00',REVERSE_HD

L290: NEQ WORK X'00' REVERSE_HD

*

SET WORK,C'(' initial ( of tail

L291: SET WORK C'('

COPY_TL LABEL

LEFT WORK,SOURCE copy tail of source

COPY_TL: LEFT WORK SOURCE

NEQ SOURCE,X'00',COPY_TL

L293: NEQ SOURCE X'00' COPY_TL

*

REVERSE_TL LABEL

LEFT TARGET2,WORK reverse result into target2

REVERSE_TL: LEFT TARGET2 WORK

NEQ WORK,X'00',REVERSE_TL

L295: NEQ WORK X'00' REVERSE_TL

*

SPLIT_EXIT LABEL

GOBACK LINKREG3 return

SPLIT_EXIT: GOBACK LINKREG3

*

* Join X & Y .................................................

*

JN_ROUTINE LABEL input in source & source2,

* output in target

SET TARGET,SOURCE

JN_ROUTINE: SET TARGET SOURCE

NEQ SOURCE2,C'(',JN_EXIT is source2 a list ?

L298: NEQ SOURCE2 C'(' JN_EXIT
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SET TARGET,X'00' if not, join is just source1

L299: SET TARGET X'00'

*

SET WORK,X'00'

L300: SET WORK X'00'

LEFT WORK,SOURCE2 copy ( at beginning of source2

L301: LEFT WORK SOURCE2

*

COPY1 LABEL

LEFT WORK,SOURCE copy source1

COPY1: LEFT WORK SOURCE

NEQ SOURCE,X'00',COPY1

L303: NEQ SOURCE X'00' COPY1

*

COPY2 LABEL

LEFT WORK,SOURCE2 copy rest of source2

COPY2: LEFT WORK SOURCE2

NEQ SOURCE2,X'00',COPY2

L305: NEQ SOURCE2 X'00' COPY2

*

REVERSE LABEL

LEFT TARGET,WORK reverse result

REVERSE: LEFT TARGET WORK

NEQ WORK,X'00',REVERSE

L307: NEQ WORK X'00' REVERSE

*

JN_EXIT LABEL

GOBACK LINKREG3 return

JN_EXIT: GOBACK LINKREG3

*

* Declare Registers ..........................................

*

EXPRESSION REGISTER

VALUE REGISTER

ALIST REGISTER

STACK REGISTER

DEPTH REGISTER

FUNCTION REGISTER

ARGUMENTS REGISTER
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VARIABLES REGISTER

X REGISTER

Y REGISTER

SOURCE REGISTER

SOURCE2 REGISTER

TARGET REGISTER

TARGET2 REGISTER

WORK REGISTER

PARENS REGISTER

LINKREG REGISTER

LINKREG2 REGISTER

LINKREG3 REGISTER

*

4.3 The Arithmetization of EVAL: Sum-

mary Information

Number of labels in program..... 308

Number of registers in program.. 19

Number of equations generated... 59

Number of =>'s generated........ 1809

Number of auxiliary variables... 448

Equations added to expand =>'s.. 12663 (7 per =>)

Variables added to expand =>'s.. 16281 (9 per =>)

Characters in left-hand side.... 475751

Characters in right-hand side... 424863

Register variables:

ALIST ARGUMENTS DEPTH EXPRESSION FUNCTION LINKREG

LINKREG2 LINKREG3 PARENS SOURCE SOURCE2 STACK

TARGET TARGET2 VALUE VARIABLES WORK X Y

Label variables:

ALIST_SEARCH BIND CHOOSE COMPARE COPY_HD COPY_TL

COPY1 COPY2 DEPTH_OKAY EVAL EVALST
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EXPRESSION_IS_ATOM EXPRESSION_ISNT_ATOM JN_EXIT

JN_ROUTINE L1 L10 L101 L102 L103 L104 L105 L106

L107 L108 L109 L110 L111 L112 L113 L114 L116 L117

L118 L119 L120 L122 L123 L124 L125 L126 L127 L128

L129 L13 L130 L131 L132 L133 L134 L135 L136 L137

L139 L14 L140 L141 L142 L143 L144 L145 L146 L147

L149 L150 L151 L152 L153 L154 L155 L156 L157 L158

L159 L16 L160 L161 L162 L164 L165 L167 L168 L169

L17 L170 L171 L173 L174 L175 L176 L177 L179 L18

L180 L181 L182 L183 L184 L186 L187 L188 L189 L19

L190 L191 L192 L193 L194 L195 L196 L197 L198 L199

L2 L20 L200 L201 L202 L203 L205 L206 L207 L208

L209 L21 L210 L211 L212 L213 L214 L215 L216 L217

L218 L219 L220 L221 L222 L223 L224 L225 L226 L227

L228 L229 L230 L231 L233 L234 L235 L236 L237 L238

L239 L24 L240 L241 L242 L243 L244 L245 L246 L247

L248 L249 L25 L250 L251 L252 L253 L254 L255 L256

L257 L258 L259 L26 L260 L261 L262 L263 L265 L266

L267 L269 L27 L270 L271 L273 L274 L275 L276 L277

L278 L279 L28 L280 L281 L282 L284 L286 L288 L29

L290 L291 L293 L295 L298 L299 L3 L30 L300 L301

L303 L305 L307 L31 L32 L33 L34 L35 L36 L37 L39 L4

L40 L41 L42 L43 L44 L45 L46 L47 L48 L49 L5 L50 L51

L52 L53 L55 L56 L57 L58 L59 L6 L60 L61 L62 L63 L64

L65 L66 L67 L68 L70 L71 L72 L73 L75 L76 L77 L78

L79 L8 L80 L81 L82 L83 L84 L85 L86 L87 L88 L89 L90

L91 L92 L93 L96 L97 L98 L99 NEW_DEPTH NO_LIMIT

NOT_ATOM NOT_EQUAL NOT_EVAL NOT_EVALD

NOT_IF_THEN_ELSE NOT_LPAR NOT_OUTPUT NOT_QUOTE

NOT_RPAR OLD_DEPTH POP_ROUTINE PUSH_ROUTINE

RETURNQ RETURN0 RETURN1 REVERSE REVERSE_HD

REVERSE_TL SPLIT_EXIT SPLIT_ROUTINE THEN_CLAUSE

UNWIND WRAP

Auxiliary variables:

char.ARGUMENTS char.DEPTH char.EXPRESSION

char.FUNCTION char.PARENS char.SOURCE char.SOURCE2

char.VALUE char.VARIABLES char.WORK char.X char.Y

dont.set.ALIST dont.set.ARGUMENTS dont.set.DEPTH
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dont.set.EXPRESSION dont.set.FUNCTION

dont.set.LINKREG dont.set.LINKREG2

dont.set.LINKREG3 dont.set.PARENS dont.set.SOURCE

dont.set.SOURCE2 dont.set.STACK dont.set.TARGET

dont.set.TARGET2 dont.set.VALUE dont.set.VARIABLES

dont.set.WORK dont.set.X dont.set.Y

eq.ARGUMENTS.C'(' eq.DEPTH.C'(' eq.DEPTH.C'_'

eq.EXPRESSION.C'(' eq.EXPRESSION.Y

eq.FUNCTION.C'.' eq.FUNCTION.C'+' eq.FUNCTION.C'!'

eq.FUNCTION.C'*' eq.FUNCTION.C'-' eq.FUNCTION.C'/'

eq.FUNCTION.C',' eq.FUNCTION.C'?'

eq.FUNCTION.C'''' eq.FUNCTION.C'=' eq.PARENS.C'1'

eq.SOURCE.C'(' eq.SOURCE.C')' eq.SOURCE.X'00'

eq.SOURCE2.C'(' eq.SOURCE2.X'00' eq.VALUE.C')'

eq.VALUE.C'0' eq.VARIABLES.C'(' eq.WORK.C')'

eq.WORK.X'00' eq.X.C'(' eq.X.C'_' eq.X.X'00'

eq.X.Y eq.Y.C'(' ge.ARGUMENTS.C'('

ge.C'.'.FUNCTION ge.C'('.ARGUMENTS ge.C'('.DEPTH

ge.C'('.EXPRESSION ge.C'('.SOURCE ge.C'('.SOURCE2

ge.C'('.VARIABLES ge.C'('.X ge.C'('.Y

ge.C'+'.FUNCTION ge.C'!'.FUNCTION ge.C'*'.FUNCTION

ge.C')'.SOURCE ge.C')'.VALUE ge.C')'.WORK

ge.C'-'.FUNCTION ge.C'/'.FUNCTION ge.C','.FUNCTION

ge.C'_'.DEPTH ge.C'_'.X ge.C'?'.FUNCTION

ge.C''''.FUNCTION ge.C'='.FUNCTION ge.C'0'.VALUE

ge.C'1'.PARENS ge.DEPTH.C'(' ge.DEPTH.C'_'

ge.EXPRESSION.C'(' ge.EXPRESSION.Y

ge.FUNCTION.C'.' ge.FUNCTION.C'+' ge.FUNCTION.C'!'

ge.FUNCTION.C'*' ge.FUNCTION.C'-' ge.FUNCTION.C'/'

ge.FUNCTION.C',' ge.FUNCTION.C'?'

ge.FUNCTION.C'''' ge.FUNCTION.C'=' ge.PARENS.C'1'

ge.SOURCE.C'(' ge.SOURCE.C')' ge.SOURCE.X'00'

ge.SOURCE2.C'(' ge.SOURCE2.X'00' ge.VALUE.C')'

ge.VALUE.C'0' ge.VARIABLES.C'(' ge.WORK.C')'

ge.WORK.X'00' ge.X.C'(' ge.X.C'_' ge.X.X'00'

ge.X.Y ge.X'00'.SOURCE ge.X'00'.SOURCE2

ge.X'00'.WORK ge.X'00'.X ge.Y.C'(' ge.Y.EXPRESSION

ge.Y.X goback.JN_EXIT goback.L14 goback.L267

goback.L271 goback.SPLIT_EXIT i ic input.ALIST
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input.ARGUMENTS input.DEPTH input.EXPRESSION

input.FUNCTION input.LINKREG input.LINKREG2

input.LINKREG3 input.PARENS input.SOURCE

input.SOURCE2 input.STACK input.TARGET

input.TARGET2 input.VALUE input.VARIABLES

input.WORK input.X input.Y longest.label next.ic

number.of.instructions output.ALIST

output.ARGUMENTS output.DEPTH output.EXPRESSION

output.FUNCTION output.LINKREG output.LINKREG2

output.LINKREG3 output.PARENS output.SOURCE

output.SOURCE2 output.STACK output.TARGET

output.TARGET2 output.VALUE output.VARIABLES

output.WORK output.X output.Y q q.minus.1

set.ALIST set.ALIST.L1 set.ALIST.L130

set.ALIST.L131 set.ALIST.L134 set.ALIST.L143

set.ALIST.L144 set.ALIST.L168 set.ALIST.L180

set.ALIST.L2 set.ALIST.L200 set.ALIST.L256

set.ALIST.L262 set.ARGUMENTS set.ARGUMENTS.L214

set.ARGUMENTS.L219 set.ARGUMENTS.L247

set.ARGUMENTS.L41 set.ARGUMENTS.L46

set.ARGUMENTS.L58 set.ARGUMENTS.L63

set.ARGUMENTS.L68 set.ARGUMENTS.L80 set.DEPTH

set.DEPTH.L125 set.DEPTH.L136 set.DEPTH.L165

set.DEPTH.L170 set.DEPTH.L182 set.DEPTH.L202

set.DEPTH.L4 set.DEPTH.NEW_DEPTH set.EXPRESSION

set.EXPRESSION.L127 set.EXPRESSION.L140

set.EXPRESSION.L197 set.EXPRESSION.L213

set.EXPRESSION.L40 set.EXPRESSION.L57

set.EXPRESSION.L71 set.FUNCTION set.FUNCTION.L187

set.FUNCTION.L191 set.FUNCTION.L48

set.FUNCTION.L78 set.LINKREG

set.LINKREG.DEPTH_OKAY set.LINKREG.L13

set.LINKREG.L132 set.LINKREG.L194 set.LINKREG.L198

set.LINKREG.L217 set.LINKREG.L223 set.LINKREG.L250

set.LINKREG.L44 set.LINKREG.L5 set.LINKREG.L61

set.LINKREG.L72 set.LINKREG.L76

set.LINKREG.OLD_DEPTH set.LINKREG2

set.LINKREG2.L122 set.LINKREG2.L129

set.LINKREG2.L133 set.LINKREG2.L135
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set.LINKREG2.L142 set.LINKREG2.L16

set.LINKREG2.L167 set.LINKREG2.L169

set.LINKREG2.L179 set.LINKREG2.L181

set.LINKREG2.L193 set.LINKREG2.L199

set.LINKREG2.L201 set.LINKREG2.L205

set.LINKREG2.L216 set.LINKREG2.L218

set.LINKREG2.L222 set.LINKREG2.L224

set.LINKREG2.L233 set.LINKREG2.L243

set.LINKREG2.L249 set.LINKREG2.L251

set.LINKREG2.L257 set.LINKREG2.L43

set.LINKREG2.L45 set.LINKREG2.L60 set.LINKREG2.L62

set.LINKREG2.L75 set.LINKREG2.L77

set.LINKREG2.UNWIND set.LINKREG3 set.LINKREG3.L101

set.LINKREG3.L108 set.LINKREG3.L124

set.LINKREG3.L157 set.LINKREG3.L160

set.LINKREG3.L175 set.LINKREG3.L186

set.LINKREG3.L189 set.LINKREG3.L196

set.LINKREG3.L212 set.LINKREG3.L229

set.LINKREG3.L239 set.LINKREG3.L245

set.LINKREG3.L255 set.LINKREG3.L261

set.LINKREG3.L265 set.LINKREG3.L269

set.LINKREG3.L29 set.LINKREG3.L33 set.LINKREG3.L39

set.LINKREG3.L51 set.LINKREG3.L56 set.LINKREG3.L67

set.LINKREG3.L70 set.LINKREG3.L82 set.LINKREG3.L86

set.PARENS set.PARENS.L282 set.PARENS.L284

set.PARENS.L286 set.SOURCE set.SOURCE.BIND

set.SOURCE.COPY_TL set.SOURCE.COPY1

set.SOURCE.EVAL set.SOURCE.EVALST

set.SOURCE.EXPRESSION_ISNT_ATOM set.SOURCE.L106

set.SOURCE.L123 set.SOURCE.L128 set.SOURCE.L141

set.SOURCE.L156 set.SOURCE.L159 set.SOURCE.L174

set.SOURCE.L188 set.SOURCE.L192 set.SOURCE.L195

set.SOURCE.L211 set.SOURCE.L215 set.SOURCE.L221

set.SOURCE.L227 set.SOURCE.L238 set.SOURCE.L242

set.SOURCE.L244 set.SOURCE.L248 set.SOURCE.L253

set.SOURCE.L259 set.SOURCE.L28 set.SOURCE.L280

set.SOURCE.L32 set.SOURCE.L42 set.SOURCE.L50

set.SOURCE.L55 set.SOURCE.L59 set.SOURCE.L66

set.SOURCE.L81 set.SOURCE.L85 set.SOURCE.NO_LIMIT
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set.SOURCE.NOT_EQUAL set.SOURCE.NOT_EVALD

set.SOURCE.NOT_IF_THEN_ELSE set.SOURCE.NOT_RPAR

set.SOURCE.POP_ROUTINE set.SOURCE.THEN_CLAUSE

set.SOURCE2 set.SOURCE2.COPY2 set.SOURCE2.L107

set.SOURCE2.L173 set.SOURCE2.L228 set.SOURCE2.L254

set.SOURCE2.L260 set.SOURCE2.L301

set.SOURCE2.PUSH_ROUTINE set.SOURCE2.WRAP

set.STACK set.STACK.L266 set.STACK.L270

set.STACK.L3 set.TARGET set.TARGET.JN_ROUTINE

set.TARGET.L278 set.TARGET.L299 set.TARGET.REVERSE

set.TARGET.REVERSE_HD set.TARGET.SPLIT_ROUTINE

set.TARGET2 set.TARGET2.L273 set.TARGET2.L279

set.TARGET2.REVERSE_TL set.VALUE

set.VALUE.ALIST_SEARCH set.VALUE.L102

set.VALUE.L104 set.VALUE.L109 set.VALUE.L113

set.VALUE.L116 set.VALUE.L139 set.VALUE.L176

set.VALUE.L206 set.VALUE.L230 set.VALUE.L34

set.VALUE.L52 set.VALUE.RETURNQ set.VALUE.RETURN0

set.VALUE.RETURN1 set.VARIABLES set.VARIABLES.L190

set.VARIABLES.L241 set.WORK set.WORK.COPY_TL

set.WORK.COPY1 set.WORK.COPY2 set.WORK.L118

set.WORK.L119 set.WORK.L149 set.WORK.L150

set.WORK.L153 set.WORK.L154 set.WORK.L18

set.WORK.L19 set.WORK.L208 set.WORK.L209

set.WORK.L235 set.WORK.L236 set.WORK.L25

set.WORK.L26 set.WORK.L275 set.WORK.L276

set.WORK.L281 set.WORK.L291 set.WORK.L300

set.WORK.L301 set.WORK.L90 set.WORK.L91

set.WORK.NOT_RPAR set.WORK.REVERSE

set.WORK.REVERSE_HD set.WORK.REVERSE_TL set.X

set.X.EXPRESSION_IS_ATOM set.X.L145 set.X.L158

set.X.L225 set.X.L240 set.X.L246 set.X.L252

set.X.L258 set.X.L31 set.X.L35 set.X.L83 set.X.L96

set.Y set.Y.L146 set.Y.L161 set.Y.L30 set.Y.L84

set.Y.L87 set.Y.L97 shift.ARGUMENTS shift.DEPTH

shift.EXPRESSION shift.FUNCTION shift.PARENS

shift.SOURCE shift.SOURCE2 shift.VALUE

shift.VARIABLES shift.WORK shift.X shift.Y time

total.input
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Variables added to expand =>'s:

r1 s1 t1 u1 v1 w1 x1 y1 z1 ... z1809

Elapsed time is 491.678602 seconds.

4.4 The Arithmetization of EVAL: Start

of Left-Hand Side

(total.input)**2+(input.ALIST+input.ARGUMENTS+input.DEPTH+inpu

t.EXPRESSION+input.FUNCTION+input.LINKREG+input.LINKREG2+input

.LINKREG3+input.PARENS+input.SOURCE+input.SOURCE2+input.STACK+

input.TARGET+input.TARGET2+input.VALUE+input.VARIABLES+input.W

ORK+input.X+input.Y)**2 + (number.of.instructions)**2+(308)**2

+ (longest.label)**2+(20)**2 + (q)**2+(256**(total.input+time

+number.of.instructions+longest.label+3))**2 + (q.minus.1+1)**

2+(q)**2 + (1+q*i)**2+(i+q**time)**2 + (r1)**2+(L1)**2 + (s1)*

*2+(i)**2 + (t1)**2+(2**s1)**2 + ((1+t1)**s1)**2+(v1*t1**(r1+1

)+u1*t1**r1+w1)**2 + (w1+x1+1)**2+(t1**r1)**2 + (u1+y1+1)**2+(

t1)**2 + (u1)**2+(2*z1+1)**2 + (r2)**2+(L2)**2 + (s2)**2+(i)**

2 + (t2)**2+(2**s2)**2 + ((1+t2)**s2)**2+(v2*t2**(r2+1)+u2*t2*

*r2+w2)**2 + (w2+x2+1)**2+(t2**r2)**2 + (u2+y2+1)**2+(t2)**2 +

(u2)**2+(2*z2+1)**2 + (r3)**2+(L3)**2 + (s3)**2+(i)**2 + (t3)

**2+(2**s3)**2 + ((1+t3)**s3)**2+(v3*t3**(r3+1)+u3*t3**r3+w3)*

*2 + (w3+x3+1)**2+(t3**r3)**2 + (u3+y3+1)**2+(t3)**2 + (u3)**2

+(2*z3+1)**2 + (r4)**2+(L4)**2 + (s4)**2+(i)**2 + (t4)**2+(2**

s4)**2 + ((1+t4)**s4)**2+(v4*t4**(r4+1)+u4*t4**r4+w4)**2 + (w4

+x4+1)**2+(t4**r4)**2 + (u4+y4+1)**2+(t4)**2 + (u4)**2+(2*z4+1

)**2 + (r5)**2+(L5)**2 + (s5)**2+(i)**2 + (t5)**2+(2**s5)**2 +

((1+t5)**s5)**2+(v5*t5**(r5+1)+u5*t5**r5+w5)**2 + (w5+x5+1)**

2+(t5**r5)**2 + (u5+y5+1)**2+(t5)**2 + (u5)**2+(2*z5+1)**2 + (

r6)**2+(L6)**2 + (s6)**2+(i)**2 + (t6)**2+(2**s6)**2 + ((1+t6)

**s6)**2+(v6*t6**(r6+1)+u6*t6**r6+w6)**2 + (w6+x6+1)**2+(t6**r

6)**2 + (u6+y6+1)**2+(t6)**2 + (u6)**2+(2*z6+1)**2 + (r7)**2+(

RETURNQ)**2 + (s7)**2+(i)**2 + (t7)**2+(2**s7)**2 + ((1+t7)**s

7)**2+(v7*t7**(r7+1)+u7*t7**r7+w7)**2 + (w7+x7+1)**2+(t7**r7)*

*2 + (u7+y7+1)**2+(t7)**2 + (u7)**2+(2*z7+1)**2 + (r8)**2+(L8)

**2 + (s8)**2+(i)**2 + (t8)**2+(2**s8)**2 + ((1+t8)**s8)**2+(v
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8*t8**(r8+1)+u8*t8**r8+w8)**2 + (w8+x8+1)**2+(t8**r8)**2 + (u8

+y8+1)**2+(t8)**2 + (u8)**2+(2*z8+1)**2 + (r9)**2+(RETURN0)**2

+ (s9)**2+(i)**2 + (t9)**2+(2**s9)**2 + ((1+t9)**s9)**2+(v9*t

9**(r9+1)+u9*t9**r9+w9)**2 + (w9+x9+1)**2+(t9**r9)**2 + (u9+y9

+1)**2+(t9)**2 + (u9)**2+(2*z9+1)**2 + (r10)**2+(L10)**2 + (s1

0)**2+(i)**2 + (t10)**2+(2**s10)**2 + ((1+t10)**s10)**2+(v10*t

10**(r10+1)+u10*t10**r10+w10)**2 + (w10+x10+1)**2+(t10**r10)**

2 + (u10+y10+1)**2+(t10)**2 + (u10)**2+(2*z10+1)**2 + (r11)**2

+(RETURN1)**2 + (s11)**2+(i)**2 + (t11)**2+(2**s11)**2 + ((1+t

11)**s11)**2+(v11*t11**(r11+1)+u11*t11**r11+w11)**2 + (w11+x11

+1)**2+(t11**r11)**2 + (u11+y11+1)**2+(t11)**2 + (u11)**2+(2*z

11+1)**2 + (r12)**2+(UNWIND)**2 + (s12)**2+(i)**2 + (t12)**2+(

2**s12)**2 + ((1+t12)**s12)**2+(v12*t12**(r12+1)+u12*t12**r12+

w12)**2 + (w12+x12+1)**2+(t12**r12)**2 + (u12+y12+1)**2+(t12)*

*2 + (u12)**2+(2*z12+1)**2 + (r13)**2+(L13)**2 + (s13)**2+(i)*

*2 + (t13)**2+(2**s13)**2 + ((1+t13)**s13)**2+(v13*t13**(r13+1

)+u13*t13**r13+w13)**2 + (w13+x13+1)**2+(t13**r13)**2 + (u13+y

13+1)**2+(t13)**2 + (u13)**2+(2*z13+1)**2 + (r14)**2+(L14)**2

+ (s14)**2+(i)**2 + (t14)**2+(2**s14)**2 + ((1+t14)**s14)**2+(

v14*t14**(r14+1)+u14*t14**r14+w14)**2 + (w14+x14+1)**2+(t14**r

14)**2 + (u14+y14+1)**2+(t14)**2 + (u14)**2+(2*z14+1)**2 + (r1

5)**2+(EVAL)**2 + (s15)**2+(i)**2 + (t15)**2+(2**s15)**2 + ((1

+t15)**s15)**2+(v15*t15**(r15+1)+u15*t15**r15+w15)**2 + (w15+x

15+1)**2+(t15**r15)**2 + (u15+y15+1)**2+(t15)**2 + (u15)**2+(2

*z15+1)**2 + (r16)**2+(L16)**2 + (s16)**2+(i)**2 + (t16)**2+(2

**s16)**2 + ((1+t16)**s16)**2+(v16*t16**(r16+1)+u16*t16**r16+w

16)**2 + (w16+x16+1)**2+(t16**r16)**2 + (u16+y16+1)**2+(t16)**

2 + (u16)**2+(2*z16+1)**2 + (r17)**2+(L17)**2 + (s17)**2+(i)**

2 + (t17)**2+(2**s17)**2 + ((1+t17)**s17)**2+(v17*t17**(r17+1)

+u17*t17**r17+w17)**2 + (w17+x17+1)**2+(t17**r17)**2 + (u17+y1

7+1)**2+(t17)**2 + (u17)**2+(2*z17+1)**2 + (r18)**2+(L18)**2 +

(s18)**2+(i)**2 + (t18)**2+(2**s18)**2 + ((1+t18)**s18)**2+(v

18*t18**(r18+1)+u18*t18**r18+w18)**2 + (w18+x18+1)**2+(t18**r1

8)**2 + (u18+y18+1)**2+(t18)**2 + (u18)**2+(2*z18+1)**2 + (r19

)**2+(L19)**2 + (s19)**2+(i)**2 + (t19)**2+(2**s19)**2 + ((1+t

19)**s19)**2+(v19*t19**(r19+1)+u19*t19**r19+w19)**2 + (w19+x19

+1)**2+(t19**r19)**2 + (u19+y19+1)**2+(t19)**2 + (u19)**2+(2*z

19+1)**2 + (r20)**2+(L20)**2 + (s20)**2+(i)**2 + (t20)**2+(2**

s20)**2 + ((1+t20)**s20)**2+(v20*t20**(r20+1)+u20*t20**r20+w20



4.5. END OF RIGHT-HAND SIDE 131

)**2 + (w20+x20+1)**2+(t20**r20)**2 + (u20+y20+1)**2+(t20)**2

+ (u20)**2+(2*z20+1)**2 + (r21)**2+(L21)**2 + (s21)**2+(i)**2

+ (t21)**2+(2**s21)**2 + ((1+t21)**s21)**2+(v21*t21**(r21+1)+u

21*t21**r21+w21)**2 + (w21+x21+1)**2+(t21**r21)**2 + (u21+y21+

1)**2+(t21)**2 + (u21)**2+(2*z21+1)**2 + (r22)**2+(EXPRESSION_

IS_ATOM)**2 + (s22)**2+(i)**2 + (t22)**2+(2**s22)**2 + ((1+t22

)**s22)**2+(v22*t22**(r22+1)+u22*t22**r22+w22)**2 + (w22+x22+1

)**2+(t22**r22)**2 + (u22+y22+1)**2+(t22)**2 + (u22)**2+(2*z22

+1)**2 + (r23)**2+(ALIST_SEARCH)**2 + (s23)**2+(i)**2 + (t23)*

*2+(2**s23)**2 + ((1+t23)**s23)**2+(v23*t23**(r23+1)+u23*t23**

r23+w23)**2 + (w23+x23+1)**2+(t23**r23)**2 + (u23+y23+1)**2+(t

23)**2 + (u23)**2+(2*z23+1)**2 + (r24)**2+(L24)**2 + (s24)**2+

(i)**2 + (t24)**2+(2**s24)**2 + ((1+t24)**s24)**2+(v24*t24**(r

4.5 The Arithmetization of EVAL: End of

Right-Hand Side

E.X'00') + 2*(s1790)*(ge.SOURCE.X'00'+ge.X'00'.SOURCE) + 2*(t1

790)*(2**s1790) + 2*((1+t1790)**s1790)*(v1790*t1790**(r1790+1)

+u1790*t1790**r1790+w1790) + 2*(w1790+x1790+1)*(t1790**r1790)

+ 2*(u1790+y1790+1)*(t1790) + 2*(u1790)*(2*z1790+1) + 2*(r1791

)*(ge.SOURCE.X'00'+ge.X'00'.SOURCE) + 2*(s1791)*(2*eq.SOURCE.X

'00'+i) + 2*(t1791)*(2**s1791) + 2*((1+t1791)**s1791)*(v1791*t

1791**(r1791+1)+u1791*t1791**r1791+w1791) + 2*(w1791+x1791+1)*

(t1791**r1791) + 2*(u1791+y1791+1)*(t1791) + 2*(u1791)*(2*z179

1+1) + 2*(r1792)*(ge.SOURCE2.C'(') + 2*(s1792)*(i) + 2*(t1792)

*(2**s1792) + 2*((1+t1792)**s1792)*(v1792*t1792**(r1792+1)+u17

92*t1792**r1792+w1792) + 2*(w1792+x1792+1)*(t1792**r1792) + 2*

(u1792+y1792+1)*(t1792) + 2*(u1792)*(2*z1792+1) + 2*(r1793)*(2

56*ge.SOURCE2.C'(') + 2*(s1793+128*i)*(256*i+char.SOURCE2) + 2

*(t1793)*(2**s1793) + 2*((1+t1793)**s1793)*(v1793*t1793**(r179

3+1)+u1793*t1793**r1793+w1793) + 2*(w1793+x1793+1)*(t1793**r17

93) + 2*(u1793+y1793+1)*(t1793) + 2*(u1793)*(2*z1793+1) + 2*(r

1794+128*i)*(256*i+char.SOURCE2) + 2*(s1794)*(256*ge.SOURCE2.C

'('+255*i) + 2*(t1794)*(2**s1794) + 2*((1+t1794)**s1794)*(v179

4*t1794**(r1794+1)+u1794*t1794**r1794+w1794) + 2*(w1794+x1794+

1)*(t1794**r1794) + 2*(u1794+y1794+1)*(t1794) + 2*(u1794)*(2*z

1794+1) + 2*(r1795)*(ge.C'('.SOURCE2) + 2*(s1795)*(i) + 2*(t17
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95)*(2**s1795) + 2*((1+t1795)**s1795)*(v1795*t1795**(r1795+1)+

u1795*t1795**r1795+w1795) + 2*(w1795+x1795+1)*(t1795**r1795) +

2*(u1795+y1795+1)*(t1795) + 2*(u1795)*(2*z1795+1) + 2*(r1796)

*(256*ge.C'('.SOURCE2) + 2*(s1796+char.SOURCE2)*(256*i+128*i)

+ 2*(t1796)*(2**s1796) + 2*((1+t1796)**s1796)*(v1796*t1796**(r

1796+1)+u1796*t1796**r1796+w1796) + 2*(w1796+x1796+1)*(t1796**

r1796) + 2*(u1796+y1796+1)*(t1796) + 2*(u1796)*(2*z1796+1) + 2

*(r1797+char.SOURCE2)*(256*i+128*i) + 2*(s1797)*(256*ge.C'('.S

OURCE2+255*i) + 2*(t1797)*(2**s1797) + 2*((1+t1797)**s1797)*(v

1797*t1797**(r1797+1)+u1797*t1797**r1797+w1797) + 2*(w1797+x17

97+1)*(t1797**r1797) + 2*(u1797+y1797+1)*(t1797) + 2*(u1797)*(

2*z1797+1) + 2*(r1798)*(eq.SOURCE2.C'(') + 2*(s1798)*(i) + 2*(

t1798)*(2**s1798) + 2*((1+t1798)**s1798)*(v1798*t1798**(r1798+

1)+u1798*t1798**r1798+w1798) + 2*(w1798+x1798+1)*(t1798**r1798

) + 2*(u1798+y1798+1)*(t1798) + 2*(u1798)*(2*z1798+1) + 2*(r17

99)*(2*eq.SOURCE2.C'(') + 2*(s1799)*(ge.SOURCE2.C'('+ge.C'('.S

OURCE2) + 2*(t1799)*(2**s1799) + 2*((1+t1799)**s1799)*(v1799*t

1799**(r1799+1)+u1799*t1799**r1799+w1799) + 2*(w1799+x1799+1)*

(t1799**r1799) + 2*(u1799+y1799+1)*(t1799) + 2*(u1799)*(2*z179

9+1) + 2*(r1800)*(ge.SOURCE2.C'('+ge.C'('.SOURCE2) + 2*(s1800)

*(2*eq.SOURCE2.C'('+i) + 2*(t1800)*(2**s1800) + 2*((1+t1800)**

s1800)*(v1800*t1800**(r1800+1)+u1800*t1800**r1800+w1800) + 2*(

w1800+x1800+1)*(t1800**r1800) + 2*(u1800+y1800+1)*(t1800) + 2*

(u1800)*(2*z1800+1) + 2*(r1801)*(ge.SOURCE2.X'00') + 2*(s1801)

*(i) + 2*(t1801)*(2**s1801) + 2*((1+t1801)**s1801)*(v1801*t180

1**(r1801+1)+u1801*t1801**r1801+w1801) + 2*(w1801+x1801+1)*(t1

801**r1801) + 2*(u1801+y1801+1)*(t1801) + 2*(u1801)*(2*z1801+1

) + 2*(r1802)*(256*ge.SOURCE2.X'00') + 2*(s1802+0*i)*(256*i+ch

ar.SOURCE2) + 2*(t1802)*(2**s1802) + 2*((1+t1802)**s1802)*(v18

02*t1802**(r1802+1)+u1802*t1802**r1802+w1802) + 2*(w1802+x1802

+1)*(t1802**r1802) + 2*(u1802+y1802+1)*(t1802) + 2*(u1802)*(2*

z1802+1) + 2*(r1803+0*i)*(256*i+char.SOURCE2) + 2*(s1803)*(256

*ge.SOURCE2.X'00'+255*i) + 2*(t1803)*(2**s1803) + 2*((1+t1803)

**s1803)*(v1803*t1803**(r1803+1)+u1803*t1803**r1803+w1803) + 2

*(w1803+x1803+1)*(t1803**r1803) + 2*(u1803+y1803+1)*(t1803) +

2*(u1803)*(2*z1803+1) + 2*(r1804)*(ge.X'00'.SOURCE2) + 2*(s180

4)*(i) + 2*(t1804)*(2**s1804) + 2*((1+t1804)**s1804)*(v1804*t1

804**(r1804+1)+u1804*t1804**r1804+w1804) + 2*(w1804+x1804+1)*(

t1804**r1804) + 2*(u1804+y1804+1)*(t1804) + 2*(u1804)*(2*z1804
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+1) + 2*(r1805)*(256*ge.X'00'.SOURCE2) + 2*(s1805+char.SOURCE2

)*(256*i+0*i) + 2*(t1805)*(2**s1805) + 2*((1+t1805)**s1805)*(v

1805*t1805**(r1805+1)+u1805*t1805**r1805+w1805) + 2*(w1805+x18

05+1)*(t1805**r1805) + 2*(u1805+y1805+1)*(t1805) + 2*(u1805)*(

2*z1805+1) + 2*(r1806+char.SOURCE2)*(256*i+0*i) + 2*(s1806)*(2

56*ge.X'00'.SOURCE2+255*i) + 2*(t1806)*(2**s1806) + 2*((1+t180

6)**s1806)*(v1806*t1806**(r1806+1)+u1806*t1806**r1806+w1806) +

2*(w1806+x1806+1)*(t1806**r1806) + 2*(u1806+y1806+1)*(t1806)

+ 2*(u1806)*(2*z1806+1) + 2*(r1807)*(eq.SOURCE2.X'00') + 2*(s1

807)*(i) + 2*(t1807)*(2**s1807) + 2*((1+t1807)**s1807)*(v1807*

t1807**(r1807+1)+u1807*t1807**r1807+w1807) + 2*(w1807+x1807+1)

*(t1807**r1807) + 2*(u1807+y1807+1)*(t1807) + 2*(u1807)*(2*z18

07+1) + 2*(r1808)*(2*eq.SOURCE2.X'00') + 2*(s1808)*(ge.SOURCE2

.X'00'+ge.X'00'.SOURCE2) + 2*(t1808)*(2**s1808) + 2*((1+t1808)

**s1808)*(v1808*t1808**(r1808+1)+u1808*t1808**r1808+w1808) + 2

*(w1808+x1808+1)*(t1808**r1808) + 2*(u1808+y1808+1)*(t1808) +

2*(u1808)*(2*z1808+1) + 2*(r1809)*(ge.SOURCE2.X'00'+ge.X'00'.S

OURCE2) + 2*(s1809)*(2*eq.SOURCE2.X'00'+i) + 2*(t1809)*(2**s18

09) + 2*((1+t1809)**s1809)*(v1809*t1809**(r1809+1)+u1809*t1809

**r1809+w1809) + 2*(w1809+x1809+1)*(t1809**r1809) + 2*(u1809+y

1809+1)*(t1809) + 2*(u1809)*(2*z1809+1)
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Program Size, Halting
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Having done the bulk of the work necessary to encode the halting

probability 
 as an exponential diophantine equation, we now turn to

theory. In Chapter 5 we trace the evolution of the concepts of program-

size complexity. In Chapter 6 we de�ne these concepts formally and

develop their basic properties. In Chapter 7 we study the notion of a

random real and show that 
 is a random real. And in Chapter 8 we

develop incompleteness theorems for random reals.
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Chapter 5

Conceptual Development

The purpose of this chapter is to introduce the notion of program-size

complexity. We do this by giving a smoothed-over story of the evolution

of this concept, giving proof sketches instead of formal proofs, starting

with program size in LISP. In Chapter 6 we will start over, and give

formal de�nitions and proofs.

5.1 Complexity via LISP Expressions

Having gone to the trouble of de�ning a particularly clean and elegant

version of LISP, one in which the de�nition of LISP in LISP really

is equivalent to running the interpreter, let's start using it to prove

theorems! The usual approach to program-size complexity is rather

abstract, in that no particular programming language is directly visible.

Eventually, we shall have to go a little bit in this direction. But we can

start with a very straightforward concrete approach, namely to consider

the size of a LISP expression measured by the number of characters

it has. This will help to build our intuition before we are forced to

use a more abstract approach to get stronger theorems. The path we

shall follow is similar to that in my �rst paper [Chaitin (1966,1969a)],

except that there I used Turing machines instead of LISP.

So we shall now study, for any given LISP object, its program-size

complexity, which is the size of the smallest program (i.e., S-expression)

for calculating it. As for notation, we shall use HLISP (\information

139
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content measured using LISP"), usually abbreviated in this chapter

by omitting the subscript for LISP. And we write jSj for the size in

characters of an S-expression S. Thus

HLISP(x) � min
x=value(p)

jpj:

Thus the complexity of an S-expression is the size of the smallest S-

expression that evaluates to it,1 the complexity of a function is the

complexity of the simplest S-expression that de�nes it,2 and the com-

plexity of an r.e. set of S-expressions is the complexity of the simplest

partial function that is de�ned i� its argument is an S-expression in the

r.e. set.

We now turn from the size of programs to their probabilities. In

the probability measure on the programs that we have in mind, the

probability of a k-character program is 128�k. This is the natural choice

since our LISP \alphabet" has 128 characters (see Figure 3.1), but let's

show that it works.

Consider the unit interval. Divide it into 128 intervals, one for

each 7-bit character in the LISP alphabet. Divide each interval into

128 subintervals, and each subinterval into 128 subsubintervals, etc.

Thus an S-expression with k characters corresponds to a piece of the

unit interval that is 128�k long. Now let's consider programs that are

syntactically valid, i.e., that have parentheses that balance. Since no

extension of such a program is syntactically valid, it follows that if we

sum the lengths of the intervals associated with character strings that

have balanced parentheses, no subinterval is counted more than once,

and thus this sum is between 0 and 1, and de�nes in a natural manner

the probability that an S-expression is syntactically valid.

In fact, we shall now show that the probability of a syntactically

correct LISP S-expression is 1, if we adopt the convention that the

invalid S-expression \)" consisting just of a right parenthesis actually

denotes the empty list \()". I.e., in Conway's terminology [Conway

(1986)], \LISP has no syntax," except for a set of measure zero. For

1Self-contained S-expression; i.e., the expression is evaluated in an empty envi-

ronment, and all needed function de�nitions must be made locally within it.
2The expressions may evaluate to di�erent function de�nitions, as long as these

de�nitions compute the same function.
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if one 
ips 7 coins for each character, eventually the number of right

parentheses will overtake the number of left parentheses, with probabil-

ity one. This is similar to the fact that heads versus tails will cross the

origin in�nitely often, with probability one. I.e., a symmetrical random

walk on a line will return to the origin with probability one. For a more

detailed explanation, see Appendix B.

Now let's select from the set of all syntactically correct programs,

which has measure 1, those that give a particular result. I.e., let's

consider PLISP(x) de�ned to be the probability that an S-expression

chosen at random evaluates to x. In other words, if one tosses 7 coins

per character, what is the chance that the LISP S-expression that one

gets evaluates to x?

Finally, we de�ne 
LISP to be the probability that an S-expression

\halts", i.e., the probability that it has a value. If one tosses 7 coins

per character, what is the chance that the LISP S-expression that one

gets halts? That is the value of 
LISP.

Now for an upper bound on LISP complexity. Consider the S-

expression ('x) which evaluates to x. This shows that

H(x) � jxj+ 3:

The complexity of an S-expression is bounded from above by its size +

3.

Now we introduce the important notion of a minimal program. A

minimal program is a LISP S-expression having the property that no

smaller S-expression has the same value. It is obvious that there is

at least one minimal program for any given LISP S-expression, i.e., at

least one p with jpj = HLISP(x) which evaluates to x. Consider the S-

expression (!q) where q is a minimal program for p, and p is a minimal

program for x. This expression evaluates to x, and thus

jpj = H(x) � 3 + jqj = 3 +H(p);

which shows that if p is a minimal program, then

H(p) � jpj � 3:

It follows that all minimal programs p, and there are in�nitely many

of them, have the property that

jH(p) � jpjj � 3:
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I.e., LISP minimal programs are algorithmically incompressible, at least

if one is programming in LISP.

Minimal programs have three other fascinating properties:

(1) Large minimal programs are \normal", that is to say, each of the

128 characters in the LISP character set appears in it with a rel-

ative frequency close to 1/128. The longer the minimal program

is, the closer the relative frequencies are to 1/128.

(2) There are few minimal programs for a given object; minimal pro-

grams are essentially unique.

(3) In any formal axiomatic theory, it is possible to exhibit at most

a �nite number of minimal programs. In other words, there is a

version of G�odel's incompleteness theorem for minimal programs:

to prove that a program is minimal is extremely hard.

Let's start by showing how to prove (3). We derive a contradiction

from the assumption that a formal theory enables one to prove that

in�nitely many programs are minimal. For if this were the case, we

could de�ne a LISP function f as follows: given the positive integer

k as argument as a list of k 1's, look for the �rst proof in the formal

theory that an S-expression p is a minimal program of size greater than

2k, and let p be the value of f(k). Then it is easy to see that

2k � 3 < jpj � 3 � H(p) = H(f(k)) � k +O(1);

which gives a contradiction for k su�ciently large. For a more re�ned

version of this result, see Theorem LB in Section 8.1.

How are (1) and (2) established? Both make use of the following

asymptotic estimate for the number of LISP S-expressions of size n,

which is demonstrated in Appendix B:

Sn � 1

2
p
�
k�1:5128n�2

where

k � n

128
:
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The reason this estimate is fundamental, is that it implies the following.

Consider the set X of S-expressions of a given size. If we know that a

speci�c S-expression x in X must be contained in a subset of X that is

less than a fraction of 128�n of the total size of the set X, then there

is a program for that improbable S-expression x that has n�O(log n)
fewer characters than the size of x.

Then (1) follows from the fact that most S-expressions are nor-

mal, and (2) follows from the observation that at most 128�k of the S-

expressions of size n can have the same value as 128k other S-expressions

of the same size. For more details on how to prove (2), see Chaitin

(1976b).

Now we turn to the important topic of the subadditivity of program-

size complexity.

Consider the S-expression (pq)where p is a minimal program for the

function f , and q is a minimal program for the data x. This expression

evaluates to f(x). This shows that

H(f(x)) � H(f) +H(x) + 2

because two characters are added to programs for f and x to get a

program for f(x).

Consider the S-expression (*p(*q())) where p and q are minimal

programs for x and y, respectively. This expression evaluates to the

pair (xy), and thus

H(x; y) � H((xy)) � H(x) +H(y) + 8

because 8 characters are added to p and q to get a program for (xy).

Considering all programs that calculate x and y instead of just the

minimal ones, we see that

P (x; y) � P ((xy)) � 2�8P (x)P (y):

We see that LISP programs are self-delimiting syntactically, be-

cause parentheses must balance. Thus they can be concatenated, and

the semantics of LISP also helps to make it easy to build programs

from subroutines. In other words, in LISP algorithmic information is

subadditive. This is illustrated beautifully by the following example:
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Consider the M-expression :(Ex)/.x()*!+x(E-x) (E'(L)) where L

is a list of expressions to be evaluated, which evaluates to the list of

values of the elements of the list L. I.e., E is what is known in nor-

mal LISP as EVLIS. This works syntactically because expressions can

be concatenated because they are delimited by balanced parentheses,

and it works semantically because we are dealing with pure functions

and there are no side-e�ects of evaluations. This yields the following

remarkable inequality:

HLISP(x1; x2; : : : ; xn) �
nX
k=1

HLISP(xk) + c:

What is remarkable here is that c is independent of n. This is better

than we will ultimately be able to do with our �nal, de�nitive complex-

ity measure, self-delimiting binary programs, in which c would have

to be about H(n) � log2 n, in order to be able to specify how many

subroutines there are.

Let B(n) be the maximum of HLISP(x) taken over all �nite binary

strings x of size n, i.e., over all x that are a list consisting only of 0's

and 1's, with n elements altogether. Then it can be shown from the

asymptotic estimate for the number of S-expressions of a given size that

B(n) =
n

7
+O(log n):

Another important consequence of this asymptotic estimate for the

number of S-expressions of a given size is that 
LISP is normal. More

precisely, if the real number 
LISP is written in any base b, then all

digits will occur with equal limiting frequency 1=b. To show this, one

needs the following

Theorem: The LISP program-size complexity of the �rst 7n bits of


LISP is greater than n � c. Proof: Given the �rst 7n bits of 
LISP in

binary, we could in principle determine all LISP S-expressions of size

� n that have a value, and then all the values, by evaluating more and

more S-expressions for more and more time until we �nd enough that

halt to account for the �rst 7n bits of 
. Thus we would know each

S-expression of complexity less than or equal to n. This is a �nite set,

and we could then pick an S-expression P (n) that is not in this set, and
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therefore has complexity greater than n. Thus there is a computable

partial function P such that

2 +HLISP(P ) +HLISP(
7n) � HLISP(P (
7n)) > n

for all n, where 
7n denotes the �rst 7n bits of the base-two numeral

for 
, which implies the assertion of the theorem. The 2 is the number

of parentheses in (Pq) where q is a minimal program for 
7n. Hence,

HLISP(
7n) � n�HLISP(P )� 2:

5.2 Complexity via Binary Programs

The next major step in the evolution of the concept of program-size

complexity was the transition from the concreteness of using a real

programming language to a more abstract de�nition in which

B(n) = n+O(1);

a step already taken at the end of Chaitin (1969a). This is easily done,

by deciding that programs will be bit strings, and by interpreting the

start of the bit string as a LISP S-expression de�ning a function, which

is evaluated and then applied to the rest of the bit string as data to give

the result of the program. The binary representation of S-expressions

that we have in mind uses 7 bits per character and is described in Figure

3.1. So now the complexity of an S-expression will be measured by the

size in bits of the shortest program of this kind that calculates it. I.e.,

we use a universal computer U that produces LISP S-expressions as

output when it is given as input programs which are bit strings of the

following form: programU = (self-delimiting LISP program for function

de�nition f) binary data d. Since there is one 7-bit byte for each LISP

character, we see that

HU (x) = min
x=f(d)

[7HLISP(f) + jdj] :

Here \jdj" denotes the size in bits of a bit string d.

Then the following convenient properties are immediate:
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(1) There are at most 2n bit strings of complexity n, and less than

2n strings of complexity less than n.

(2) There is a constant c such that all bit strings of length n have

complexity less than n + c. In fact, c = 7 will do, because the

LISP function ' (QUOTE) is one 7-bit character long.

(3) Less than 2�k of the bit strings of length n have H < n� k. And
more than 1�2�k of the bit strings of length n have n�k � H <

n+ c. This follows immediately from (1) and (2) above.

This makes it easy to prove statistical properties of random strings,

but this convenience is bought at a cost. Programs are no longer self-

delimiting. Thus the halting probability 
 can no longer be de�ned in

a natural way, because if we give measure 2�n to n-bit programs, then

the halting probability diverges, since now for each n there are at least

2n=c n-bit programs that halt. Also the fundamental principle of the

subadditivity of algorithmic information

H(x; y) � H(x) +H(y) + c

no longer holds.

5.3 Complexity via Self-Delimiting Bi-

nary Programs

The solution is to modify the de�nition yet again, recovering the prop-

erty that no valid program is an extension of another valid program

that we had in LISP. This was done in Chaitin (1975b). So again

we shall consider a bit string program to start with a (self-delimiting)

LISP function de�nition f that is evaluated and applied to the rest d

of the bit string as data.

But we wish to eliminate f with the property that they produce

values when applied to d and e if e is an extension of d. To force f to

treat its data as self-delimiting, we institute a watch-dog policy that

operates in stages. At stage k of applying f to d, we simultaneously

consider all pre�xes and extensions of d up to k bits long, and apply f
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to d and to these pre�xes and extensions of d for k time steps. We only

consider f of d to be de�ned if f of d can be calculated in time k, and

none of the pre�xes or extensions of d that we consider at stage k gives a

value when f is applied to it for time k. This watch-dog policy achieves

the following. If f is self-delimiting, in that f(d) is de�ned implies f(e)

is not de�ned if e is an extension of d, then nothing is changed by the

watch-dog policy (except it slows things down). If however f does not

treat its data as self-delimiting, the watch-dog will ignore f(e) for all e

that are pre�xes or extensions of a d which it has already seen has the

property that f(d) is de�ned. Thus the watch-dog forces f to treat its

data as self-delimiting.

The result is a \self-delimiting universal binary computer," a func-

tion V (p) where p is a bit string, with the following properties:

(1) If V (p) is de�ned and p0 is an extension of p, then V (p0) is not

de�ned.

(2) IfW (p) is any computable partial function on the bit strings with

the property in (1), then there is a bit string pre�x w such that

for all p,

V (wp) =W (p):

In fact, w is just a LISP program forW , converted from characters

to binary.

(3) Hence

HV (x) � HW (x) + 7HLISP(W ):

Now we get back most of the nice properties we had before. For

example, we have a well-de�ned halting probability 
V again, result-

ing from assigning the measure 2�n to each n-bit program, because no

extension of a program that halts is a program that halts, i.e., no ex-

tension of a valid program is a valid program. And information content

is subadditive again:

HV (x; y) � HV (x) +HV (y) + c:

However, it is no longer the case that BV (n), the maximum of HV (x)

taken over all n-bit strings x, is equal to n+O(1). Rather we have

BV (n) = n+HV (n) +O(1);
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because in general the best way to calculate an n-bit string in a self-

delimiting manner is to �rst calculate its length n in a self-delimiting

manner, which takes HV (n) bits, and to then read the next n bits of

the program, for a total of HV (n) + n bits. HV (n) is usually about

log2 n.

A complete LISP program for calculating 
V in the limit from below

!k � !k+1 ! 
V

is given in Section 5.4. !k, the kth lower bound on 
V , is obtained

by running all programs up to k bits in size on the universal computer

U of Section 5.2 for time k. More precisely, a program p contributes

measure

2�jpj

to !k if jpj � k and (Up) can be evaluated within depth k, and there

is no pre�x or extension q of p with the same property, i.e., such that

jqj � k and (Uq) can be evaluated within depth k.

However as this is stated we will not get !k � !k+1, because a

program may contribute to !k and then be barred from contributing

to !k+1. In order to �x this the computation of !k is actually done in

stages. At stage j = 0; 1; 2; : : : ; k all programs of size � j are run on

U for time j. Once a program is discovered that halts, no pre�xes or

extensions of it are considered in any future stages. And if there is a

\tie" and two programs that halt are discovered at the same stage and

one of them is an extension of the other, then the smaller program wins

and contributes to !k.

!10, the tenth lower bound on 
V , is actually calculated in Section

5.4, and turns out to be 127/128. The reason we get this value, is

that to calculate !10, every one-character LISP function f is applied

to the remaining bits of a program that is up to 10 bits long. Of

the 128 one-character strings f , only \(" fails to halt, because it is

syntactically incomplete; the remaining 127 one-character possibilities

for f halt because of our permissive LISP semantics and because we

consider \)" to mean \()".

5.4 Omega in LISP
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LISP Interpreter Run

[

Make a list of strings into a prefix-free set

by removing duplicates. Last occurrence is kept.

]

& (Rx)

[ P-equiv: are two bit strings prefixes of each other ? ]

: (Pxy) /.x1 /.y1 /=+x+y (P-x-y) 0

[ is x P-equivalent to a member of l ? ]

: (Mxl) /.l0 /(Px+l) 1 (Mx-l)

[ body of R follows: ]

/.xx : r (R-x) /(M+xr) r *+xr

R: (&(x)(('(&(P)(('(&(M)(/(.x)x(('(&(r)(/(M(+x)r)r(*(

+x)r))))(R(-x))))))('(&(xl)(/(.l)0(/(Px(+l))1(Mx(-

l)))))))))('(&(xy)(/(.x)1(/(.y)1(/(=(+x)(+y))(P(-x

)(-y))0)))))))

[

K th approximation to Omega for given U.

]

& (WK)

: (Cxy) /.xy *+x(C-xy) [ concatenation (set union) ]

: (B)

: k ,(*"&*()*,'k()) [ write k & its value ]

: s (R(C(Hk)s)) [ add to s programs not P-equiv which halt ]

: s ,(*"&*()*,'s()) [ write s & its value ]

/=kK (Ms) [ if k = K, return measure of set s ]

: k *1k [ add 1 to k ]

(B)

: k () [ initialize k to zero ]

: s () [ initialize s to empty set of programs ]

(B)

W: (&(K)(('(&(C)(('(&(B)(('(&(k)(('(&(s)(B)))())))())

))('(&()(('(&(k)(('(&(s)(('(&(s)(/(=kK)(Ms)(('(&(k

)(B)))(*1k)))))(,((*&(*()(*(,('s))()))))))))(R(C(H
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k)s)))))(,((*&(*()(*(,('k))())))))))))))('(&(xy)(/

(.x)y(*(+x)(C(-x)y)))))))

[

Subset of computer programs of size up to k

which halt within time k when run on U.

]

& (Hk)

[ quote all elements of list ]

: (Qx) /.xx **"'*+x()(Q-x)

[ select elements of x which have property P ]

: (Sx) /.xx /(P+x) *+x(S-x) (S-x)

[ property P

is that program halts within time k when run on U ]

: (Px) =0.?k(Q*U*x())

[ body of H follows:

select subset of programs of length up to k ]

(S(Xk))

H: (&(k)(('(&(Q)(('(&(S)(('(&(P)(S(Xk))))('(&(x)(=0(.

(?k(Q(*U(*x())))))))))))('(&(x)(/(.x)x(/(P(+x))(*(

+x)(S(-x)))(S(-x)))))))))('(&(x)(/(.x)x(*(*'(*(+x)

()))(Q(-x))))))))

[

Produce all bit strings of length less than or equal to k.

Bigger strings come first.

]

& (Xk)

/.k '(())

: (Zy) /.y '(()) **0+y **1+y (Z-y)

(Z(X-k))

X: (&(k)(/(.k)('(()))(('(&(Z)(Z(X(-k)))))('(&(y)(/(.y

)('(()))(*(*0(+y))(*(*1(+y))(Z(-y))))))))))
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& (Mx) [ M calculates measure of set of programs ]

[ S = sum of three bits ]

: (Sxyz) =x=yz

[ C = carry of three bits ]

: (Cxyz) /x/y1z/yz0

[ A = addition (left-aligned base-two fractions)

returns carry followed by sum ]

: (Axy) /.x*0y /.y*0x : z (A-x-y) *(C+x+y+z) *(S+x+y+z) -z

[ M = change bit string to 2**-length of string

example: (111) has length 3, becomes 2**-3 = (001) ]

: (Mx) /.x'(1) *0(M-x)

[ P = given list of strings,

form sum of 2**-length of strings ]

: (Px)

/.x'(0)

: y (A(M+x)(P-x))

: z /+y ,'(overflow) 0 [ if carry out, overflow ! ]

-y [ remove carry ]

[ body of definition of measure of a set of programs follows:]

: s (Px)

*+s *". -s [ insert binary point ]

M: (&(x)(('(&(S)(('(&(C)(('(&(A)(('(&(M)(('(&(P)(('(&

(s)(*(+s)(*.(-s)))))(Px))))('(&(x)(/(.x)('(0))(('(

&(y)(('(&(z)(-y)))(/(+y)(,('(overflow)))0))))(A(M(

+x))(P(-x))))))))))('(&(x)(/(.x)('(1))(*0(M(-x))))

)))))('(&(xy)(/(.x)(*0y)(/(.y)(*0x)(('(&(z)(*(C(+x

)(+y)(+z))(*(S(+x)(+y)(+z))(-z)))))(A(-x)(-y))))))

))))('(&(xyz)(/x(/y1z)(/yz0)))))))('(&(xyz)(=x(=yz

))))))

[

If k th bit of string x is 1 then halt, else loop forever.

Value, if has one, is always 0.

]

& (Oxk) /=0.,k (O-x-k) [ else ]

/.x (Oxk) [ string too short implies bit = 0, else ]

/+x 0 (Oxk)
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O: (&(xk)(/(=0(.(,k)))(O(-x)(-k))(/(.x)(Oxk)(/(+x)0(O

xk)))))

[[[ Universal Computer ]]]

& (Us)

[

Alphabet:

]

: A '"

((((((((leftparen)(rightparen))(AB))((CD)(EF)))(((GH)(IJ))((KL

)(MN))))((((OP)(QR))((ST)(UV)))(((WX)(YZ))((ab)(cd)))))(((((ef

)(gh))((ij)(kl)))(((mn)(op))((qr)(st))))((((uv)(wx))((yz)(01))

)(((23)(45))((67)(89))))))((((((_+)(-.))((',)(!=)))(((*&)(?/))

((:")($%))))((((%%)(%%))((%%)(%%)))(((%%)(%%))((%%)(%%)))))(((

((%%)(%%))((%%)(%%)))(((%%)(%%))((%%)(%%))))((((%%)(%%))((%%)(

%%)))(((%%)(%%))((%%)(%%)))))))

[

Read 7-bit character from bit string.

Returns character followed by rest of string.

Typical result is (A 1111 000).

]

: (Cs)

/.--- ---s (Cs) [ undefined if less than 7 bits left ]

: (Rx) +-x [ 1 bit: take right half ]

: (Lx) +x [ 0 bit: take left half ]

*

(/+s R L

(/+-s R L

(/+--s R L

(/+---s R L

(/+----s R L

(/+-----s R L

(/+------s R L

A)))) )))

---- ---s
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[

Read zero or more s-exp's until get to a right parenthesis.

Returns list of s-exp's followed by rest of string.

Typical result is ((AB) 1111 000).

]

: (Ls)

: c (Cs) [ c = read char from input s ]

/=+c'(right paren) *()-c [ end of list ]

: d (Es) [ d = read s-exp from input s ]

: e (L-d) [ e = read list from rest of input ]

**+d+e-e [ add s-exp to list ]

[

Read single s-exp.

Returns s-exp followed by rest of string.

Typical result is ((AB) 1111 000).

]

: (Es)

: c (Cs) [ c = read char from input s ]

/=+c'(right paren) *()-c [ invalid right paren becomes () ]

/=+c'(left paren) (L-c) [ read list from rest of input ]

c [ otherwise atom followed by rest of input ]

[ end of definitions; body of U follows: ]

: x (Es) [ split bit string into function followed by data ]

! *+x**"'*-x()() [ apply unquoted function to quoted data ]

U: (&(s)(('(&(A)(('(&(C)(('(&(L)(('(&(E)(('(&(x)(!(*(

+x)(*(*'(*(-x)()))())))))(Es))))('(&(s)(('(&(c)(/(

=(+c)('(rightparen)))(*()(-c))(/(=(+c)('(leftparen

)))(L(-c))c))))(Cs)))))))('(&(s)(('(&(c)(/(=(+c)('

(rightparen)))(*()(-c))(('(&(d)(('(&(e)(*(*(+d)(+e

))(-e))))(L(-d)))))(Es)))))(Cs)))))))('(&(s)(/(.(-

(-(-(-(-(-s)))))))(Cs)(('(&(R)(('(&(L)(*((/(+s)RL)

((/(+(-s))RL)((/(+(-(-s)))RL)((/(+(-(-(-s))))RL)((

/(+(-(-(-(-s)))))RL)((/(+(-(-(-(-(-s))))))RL)((/(+

(-(-(-(-(-(-s)))))))RL)A)))))))(-(-(-(-(-(-(-s))))

))))))('(&(x)(+x))))))('(&(x)(+(-x)))))))))))('(((

(((((leftparen)(rightparen))(AB))((CD)(EF)))(((GH)
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(IJ))((KL)(MN))))((((OP)(QR))((ST)(UV)))(((WX)(YZ)

)((ab)(cd)))))(((((ef)(gh))((ij)(kl)))(((mn)(op))(

(qr)(st))))((((uv)(wx))((yz)(01)))(((23)(45))((67)

(89))))))((((((_+)(-.))((',)(!=)))(((*&)(?/))((:")

($%))))((((%%)(%%))((%%)(%%)))(((%%)(%%))((%%)(%%)

))))(((((%%)(%%))((%%)(%%)))(((%%)(%%))((%%)(%%)))

)((((%%)(%%))((%%)(%%)))(((%%)(%%))((%%)(%%)))))))

)))

[ Omega ! ]

(W'(1111 111 111))

expression (W('(1111111111)))

display k

display ()

display s

display ()

display k

display (1)

display s

display ()

display k

display (11)

display s

display ()

display k

display (111)

display s

display ()

display k

display (1111)

display s

display ()

display k

display (11111)

display s

display ()

display k
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display (111111)

display s

display ()

display k

display (1111111)

display s

display ()

display k

display (11111111)

display s

display ()

display k

display (111111111)

display s

display ()

display k

display (1111111111)

display (000)

display (100)

display (010)

display (110)

display (001)

display (101)

display (011)

display (111)

display (00)

display (10)

display (01)

display (11)

display (0)

display (1)

display ()

display s

display ((1000000)(0100000)(1100000)(0010000)(1010000)(011

0000)(1110000)(0001000)(1001000)(0101000)(1101000)

(0011000)(1011000)(0111000)(1111000)(0000100)(1000

100)(0100100)(1100100)(0010100)(1010100)(0110100)(

1110100)(0001100)(1001100)(0101100)(1101100)(00111

00)(1011100)(0111100)(1111100)(0000010)(1000010)(0
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100010)(1100010)(0010010)(1010010)(0110010)(111001

0)(0001010)(1001010)(0101010)(1101010)(0011010)(10

11010)(0111010)(1111010)(0000110)(1000110)(0100110

)(1100110)(0010110)(1010110)(0110110)(1110110)(000

1110)(1001110)(0101110)(1101110)(0011110)(1011110)

(0111110)(1111110)(0000001)(1000001)(0100001)(1100

001)(0010001)(1010001)(0110001)(1110001)(0001001)(

1001001)(0101001)(1101001)(0011001)(1011001)(01110

01)(1111001)(0000101)(1000101)(0100101)(1100101)(0

010101)(1010101)(0110101)(1110101)(0001101)(100110

1)(0101101)(1101101)(0011101)(1011101)(0111101)(11

11101)(0000011)(1000011)(0100011)(1100011)(0010011

)(1010011)(0110011)(1110011)(0001011)(1001011)(010

1011)(1101011)(0011011)(1011011)(0111011)(1111011)

(0000111)(1000111)(0100111)(1100111)(0010111)(1010

111)(0110111)(1110111)(0001111)(1001111)(0101111)(

1101111)(0011111)(1011111)(0111111)(1111111))

value (0.1111111)

End of LISP Run

Elapsed time is 127.585399 seconds.



Chapter 6

Program Size

6.1 Introduction

In this chapter we present a new de�nition of program-size complex-

ity. H(A;B=C;D) is de�ned to be the size in bits of the shortest

self-delimiting program for calculating strings A and B if one is given

a minimal-size self-delimiting program for calculating strings C and D.

As is the case in LISP, programs are required to be self-delimiting, but

instead of achieving this with balanced parentheses, we merely stipulate

that no meaningful program be a pre�x of another. Moreover, instead

of being given C and D directly, one is given a program for calculating

them that is minimal in size. Unlike previous de�nitions, this one has

precisely the formal properties of the entropy concept of information

theory.

What train of thought led us to this de�nition? Following [Chaitin

(1970a)], think of a computer as decoding equipment at the receiving

end of a noiseless binary communications channel. Think of its pro-

grams as code words, and of the result of the computation as the de-

coded message. Then it is natural to require that the programs/code

words form what is called a \pre�x-free set," so that successive messages

sent across the channel (e.g. subroutines) can be separated. Pre�x-free

sets are well understood; they are governed by the Kraft inequality,

which therefore plays an important role in this chapter.

One is thus led to de�ne the relative complexity H(A;B=C;D) of

157
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A and B with respect to C and D to be the size of the shortest self-

delimiting program for producing A and B from C and D. However,

this is still not quite right. Guided by the analogy with information

theory, one would like

H(A;B) = H(A) +H(B=A) + �

to hold with an error term � bounded in absolute value. But, as is

shown in the Appendix of Chaitin (1975b), j�j is unbounded. So

we stipulate instead that H(A;B=C;D) is the size of the smallest self-

delimiting program that produces A and B when it is given a minimal-

size self-delimiting program for C and D. We shall show that j�j is
then bounded.

For related concepts that are useful in statistics, see Rissanen

(1986).

6.2 De�nitions

In this chapter, � = LISP () is the empty string. f�; 0, 1, 00, 01,
10, 11, 000, : : :g is the set of �nite binary strings, ordered as indicated.

Henceforth we say \string" instead of \binary string;" a string is un-

derstood to be �nite unless the contrary is explicitly stated. As before,

jsj is the length of the string s. The variables p, q, s, and t denote

strings. The variables c, i, k, m, and n denote non-negative integers.

#(S) is the cardinality of the set S.

De�nition of a Pre�x-Free Set

A pre�x-free set is a set of strings S with the property that no string

in S is a pre�x of another.

De�nition of a Computer

A computer C is a computable partial function that carries a pro-

gram string p and a free data string q into an output string C(p; q) with

the property that for each q the domain of C(:; q) is a pre�x-free set;

i.e., if C(p; q) is de�ned and p is a proper pre�x of p0, then C(p0; q) is

not de�ned. In other words, programs must be self-delimiting.

De�nition of a Universal Computer

U is a universal computer i� for each computer C there is a constant

sim(C) with the following property: if C(p; q) is de�ned, then there is
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a p0 such that U(p0; q) = C(p; q) and jp0j � jpj + sim(C).

Theorem

There is a universal computer U .

Proof

U �rst reads the binary representation of a LISP S-expression f

from the beginning of its program string p, with 7 bits per character

as speci�ed in Figure 3.1. Let p0 denote the remainder of the program

string p. Then U proceeds in stages. At stage t, U applies for t time

units the S-expression f that it has read to two arguments, the rest of

the program string p0, and the free data string q. And U also applies

f for t time units to each string of size less than or equal to t and the

free data string q. More precisely, \U applies f for time t to x and y"

means that U uses the LISP primitive function ? to evaluate the triple

(f('x)('y)), so that the unquoted function de�nition f is evaluated

before being applied to its arguments, which are quoted. If f(p0; q)

yields a value before any f(a pre�x or extension of p0; q) yields a value,

then U(p; q) = f(p0; q). Otherwise U(p; q) is unde�ned, and, as before,

in case of \ties", the smaller program wins. It follows that U satis�es

the de�nition of a universal computer with

sim(C) = 7HLISP(C):

Q.E.D.

We pick this particular universal computer U as the stan-

dard one we shall use for measuring program-size complexities

throughout the rest of this book.

De�nition of Canonical Programs, Complexities, and Prob-

abilities

(a) The canonical program.

s� � minU(p;�)=s p:

I.e., s� is the shortest string that is a program for U to

calculate s, and if several strings of the same size have this

property, we pick the one that comes �rst when all strings

of that size are ordered from all 0's to all 1's in the usual

lexicographic order.
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(b) Complexities.

HC(s) � minC(p;�)=s jpj (may be 1);

H(s) � HU (s);

HC(s=t) � minC(p;t�)=s jpj (may be 1);

H(s=t) � HU (s=t);

HC(s : t) � HC(t)�HC(t=s);

H(s : t) � HU (s : t):

(c) Probabilities.

PC(s) � PC(p;�)=s 2
�jpj;

P (s) � PU (s);

PC(s=t) � PC(p;t�)=s 2
�jpj;

P (s=t) � PU (s=t);


 � PU(p;�) is de�ned 2
�jpj:

Remark on Omega

Note that the LISP program for calculating 
 in the limit from

below that we gave in Section 5.4 is still valid, even though the notion

of \free data" did not appear in Chapter 5. Section 5.4 still works,

because giving a LISP function only one argument is equivalent to

giving it that argument and the empty list � as a second argument.

Remark on Nomenclature

The names of these concepts mix terminology from information the-

ory, from probability theory, and from the �eld of computational com-

plexity. H(s) may be referred to as the algorithmic information content

of s or the program-size complexity of s, and H(s=t) may be referred to

as the algorithmic information content of s relative to t or the program-

size complexity of s given t. Or H(s) and H(s=t) may be termed the

algorithmic entropy and the conditional algorithmic entropy, respec-

tively. H(s : t) is called the mutual algorithmic information of s and t;

it measures the degree of interdependence of s and t. More precisely,

H(s : t) is the extent to which knowing s helps one to calculate t,

which, as we shall see in Theorem I9, also turns out to be the extent to
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which it is cheaper to calculate them together than to calculate them

separately. P (s) and P (s=t) are the algorithmic probability and the

conditional algorithmic probability of s given t. And 
 is of course the

halting probability of U (with null free data).

Theorem I0

(a) H(s) � HC(s) + sim(C),

(b) H(s=t) � HC(s=t) + sim(C),

(c) s� 6= �,

(d) s = U(s�;�),

(e) H(s) = js�j,
(f) H(s) 6=1,

(g) H(s=t) 6=1,

(h) 0 � PC(s) � 1,

(i) 0 � PC(s=t) � 1,

(j) 1 � Ps PC(s),

(k) 1 � Ps PC(s=t),

(l) PC(s) � 2�HC (s),

(m) PC(s=t) � 2�HC (s=t),

(n) 0 < P (s) < 1,

(o) 0 < P (s=t) < 1,

(p) # (fs : HC(s) < ng) < 2n,

(q) # (fs : HC(s=t) < ng) < 2n,

(r) #
�n
s : PC(s) >

n

m

o�
< m

n
,

(s) #
�n
s : PC(s=t) >

n

m

o�
< m

n
.
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Proof

These are immediate consequences of the de�nitions. Q.E.D.

Extensions of the Previous Concepts to Tuples of Strings

We have de�ned the program-size complexity and the algorithmic

probability of individual strings, the relative complexity of one string

given another, and the algorithmic probability of one string given an-

other. Let's extend this from individual strings to tuples of strings:

this is easy to do because we have used LISP to construct our universal

computer U , and the ordered list (s1s2 : : : sn) is a basic LISP notion.

Here each sk is a string, which is de�ned in LISP as a list of 0's and 1's.

Thus, for example, we can de�ne the relative complexity of computing

a triple of strings given another triple of strings:

H(s1; s2; s3=s4; s5; s6) � H((s1s2s3)=(s4s5s6)):

H(s; t) � H((st)) is often called the joint information content of s and

t.

Extensions of the Previous Concepts to Non-Negative In-

tegers

We have de�ned H and P for tuples of strings. This is now extended

to tuples each of whose elements may either be a string or a non-

negative integer n. We do this by identifying n with the list consisting

of n 1's, i.e., with the LISP S-expression (111: : : 111) that has exactly

n 1's.

6.3 Basic Identities

This section has two objectives. The �rst is to show that H satis�es

the fundamental inequalities and identities of information theory to

within error terms of the order of unity. For example, the information

in s about t is nearly symmetrical. The second objective is to show

that P is approximately a conditional probability measure: P (t=s) and

P (s; t)=P (s) are within a constant multiplicative factor of each other.

The following notation is convenient for expressing these approxi-

mate relationships. O(1) denotes a function whose absolute value is less

than or equal to c for all values of its arguments. And f ' g means that
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the functions f and g satisfy the inequalities cf � g and f � cg for all

values of their arguments. In both cases c is an unspeci�ed constant.

Theorem I1

(a) H(s; t) = H(t; s) +O(1),

(b) H(s=s) = O(1),

(c) H(H(s)=s) = O(1),

(d) H(s) � H(s; t) +O(1),

(e) H(s=t) � H(s) +O(1),

(f) H(s; t) � H(s) +H(t=s) +O(1),

(g) H(s; t) � H(s) +H(t) +O(1),

(h) H(s : t) � O(1),
(i) H(s : t) � H(s) +H(t)�H(s; t) +O(1),

(j) H(s : s) = H(s) +O(1),

(k) H(� : s) = O(1),

(l) H(s : �) = O(1).

Proof

These are easy consequences of the de�nitions. The proof of The-

orem I1(f) is especially interesting, and is given in full below. Also,

note that Theorem I1(g) follows immediately from Theorem I1(f,e),

and Theorem I1(i) follows immediately from Theorem I1(f) and the

de�nition of H(s : t).

Now for the proof of Theorem I1(f). We claim (see the next para-

graph) that there is a computer C with the following property. If

U(p; s�) = t and jpj = H(t=s)

(i.e., if p is a minimal-size program for calculating t from s�), then

C(s�p;�) = (s; t):
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By using Theorem I0(e,a) we see that

HC(s; t) � js�pj = js�j+ jpj = H(s) +H(t=s);

and

H(s; t) � HC(s; t) + sim(C) � H(s) +H(t=s) +O(1):

It remains to verify the claim that there is such a computer. C

does the following when it is given the program s�p and the free data

�. First C pretends to be U . More precisely, C generates the r.e. set

V = fv : U(v;�) is de�nedg. As it generates V , C continually checks

whether or not that part r of its program that it has already read is

a pre�x of some known element v of V . Note that initially r = �.

Whenever C �nds that r is a pre�x of a v 2 V , it does the following.
If r is a proper pre�x of v, C reads another bit of its program. And if

r = v, C calculates U(r;�), and C's simulation of U is �nished. In this

manner C reads the initial portion s� of its program and calculates s.

Then C simulates the computation that U performs when given the

free data s� and the remaining portion of C's program. More precisely,

C generates the r.e. set W = fw : U(w; s�) is de�nedg. As it generates
W , C continually checks whether or not that part r of its program that

it has already read is a pre�x of some known element w of W . Note

that initially r = �. Whenever C �nds that r is a pre�x of a w 2 W ,

it does the following. If r is a proper pre�x of w, C reads another bit

of its program. And if r = w, C calculates U(r; s�), and C's second

simulation of U is �nished. In this manner C reads the �nal portion p

of its program and calculates t from s�. The entire program has now

been read, and both s and t have been calculated. C �nally forms the

pair (s; t) and halts, indicating this to be the result of the computation.

Q.E.D.

Remark

The rest of this section is devoted to showing that the \�" in The-

orem I1(f) and I1(i) can be replaced by \=." The arguments used have

a strong probabilistic as well as an information-theoretic 
avor.

Theorem I2

(Extended Kraft inequality condition for the existence of a pre�x-

free set).
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Hypothesis. Consider an e�ectively given list of �nitely or in�nitely

many \requirements"

f(sk; nk) : k = 0; 1; 2; : : :g
for the construction of a computer. The requirements are said to be

\consistent" if

1 �X
k

2�nk ;

and we assume that they are consistent. Each requirement (sk; nk)

requests that a program of length nk be \assigned" to the result sk. A

computer C is said to \satisfy" the requirements if there are precisely

as many programs p of length n such that C(p;�) = s as there are pairs

(s; n) in the list of requirements. Such a C must have the property that

PC(s) =
X
sk=s

2�nk

and

HC(s) = min
sk=s

nk:

Conclusion. There are computers that satisfy these requirements.

Moreover, if we are given the requirements one by one, then we can

simulate a computer that satis�es them. Hereafter we refer to the par-

ticular computer that the proof of this theorem shows how to simulate

as the one that is \determined" by the requirements.

Proof

(a) First we give what we claim is the de�nition of a particular com-

puter C that satis�es the requirements. In the second part of the

proof we justify this claim.

As we are given the requirements, we assign programs to results.

Initially all programs for C are available. When we are given the

requirement (sk; nk) we assign the �rst available program of length

nk to the result sk (�rst in the usual ordering �, 0, 1, 00, 01, 10,

11, 000, : : :). As each program is assigned, it and all its pre�xes

and extensions become unavailable for future assignments. Note

that a result can have many programs assigned to it (of the same

or di�erent lengths) if there are many requirements involving it.
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How can we simulate C? As we are given the requirements, we

make the above assignments, and we simulate C by using the

technique that was given in the proof of Theorem I1(f), reading

just that part of the program that is necessary.

(b) Now to justify the claim. We must show that the above rule for

making assignments never fails, i.e., we must show that it is never

the case that all programs of the requested length are unavailable.

A geometrical interpretation is necessary. Consider the unit inter-

val [0; 1) � freal x : 0 � x < 1g. The kth program (0 � k < 2n)

of length n corresponds to the intervalh
k2�n; (k + 1)2�n

�
:

Assigning a program corresponds to assigning all the points in

its interval. The condition that the set of assigned programs be

pre�x-free corresponds to the rule that an interval is available for

assignment i� no point in it has already been assigned. The rule

we gave above for making assignments is to assign that intervalh
k2�n; (k + 1)2�n

�

of the requested length 2�n that is available that has the smallest

possible k. Using this rule for making assignments gives rise to

the following fact.

Fact. The set of those points in [0; 1) that are unassigned can

always be expressed as the union of a �nite number of intervalsh
ki2

�ni ; (ki + 1)2�ni
�

with the following properties: ni > ni+1, and

(ki + 1)2�ni � ki+12
�ni+1 :

I.e., these intervals are disjoint, their lengths are distinct powers

of 2, and they appear in [0; 1) in order of increasing length.

We leave to the reader the veri�cation that this fact is always

the case and that it implies that an assignment is impossible
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only if the interval requested is longer than the total length of

the unassigned part of [0; 1), i.e., only if the requirements are

inconsistent. Q.E.D.

Note

The preceding proof may be considered to involve a computer mem-

ory \storage allocation" problem. We have one unit of storage, and all

requests for storage request a power of two of storage, i.e., one-half

unit, one-quarter unit, etc. Storage is never freed. The algorithm given

above will be able to service a series of storage allocation requests as

long as the total storage requested is not greater than one unit. If the

total amount of storage remaining at any point in time is expressed as

a real number in binary, then the crucial property of the above storage

allocation technique can be stated as follows: at any given moment

there will be a block of size 2�k of free storage if and only if the binary

digit corresponding to 2�k in the base-two expansion for the amount of

storage remaining at that point is a 1 bit.

Theorem I3

(Computing HC and PC \in the limit").

Consider a computer C.

(a) The set of all true propositions of the form

\HC(s) � n"

is recursively enumerable. Given t� one can recursively enumerate

the set of all true propositions of the form

\HC(s=t) � n":

(b) The set of all true propositions of the form

\PC(s) >
n

m
"

is recursively enumerable. Given t� one can recursively enumerate

the set of all true propositions of the form

\PC(s=t) >
n

m
":



168 CHAPTER 6. PROGRAM SIZE

Proof

This is an easy consequence of the fact that the domain of C is an

r.e. set. Q.E.D.

Remark

The set of all true propositions of the form

\H(s=t) � n"

is not r.e.; for if it were r.e., it would easily follow from Theorems I1(c)

and I0(q) that Theorem 5.1(f) of Chaitin (1975b) is false.

Theorem I4

For each computer C there is a constant c such that

(a) H(s) � � log2 PC(s) + c,

(b) H(s=t) � � log2 PC(s=t) + c.

Proof

First a piece of notation. By lg x we mean the greatest integer less

than the base-two logarithm of the real number x. I.e., if 2n < x �
2n+1, then lg x = n. Thus 2lgx < x as long as x is positive. E.g.,

lg 2�3:5 = lg 2�3 = �4 and lg 23:5 = lg 24 = 3.

It follows fromTheorem I3(b) that one can eventually discover every

lower bound on PC(s) that is a power of two. In other words, the set

of all true propositions

T �
n
\PC(s) > 2�n" : PC(s) > 2�n

o

is recursively enumerable. Similarly, given t� one can eventually dis-

cover every lower bound on PC(s=t) that is a power of two. In other

words, given t� one can recursively enumerate the set of all true propo-

sitions

Tt �
n
\PC(s=t) > 2�n" : PC(s=t) > 2�n

o
:

This will enable us to use Theorem I2 to show that there is a computer

D with these properties:

(
HD(s) = � lgPC(s) + 1;

PD(s) = 2lgPC(s) < PC(s);
(6.1)
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(
HD(s=t) = � lgPC(s=t) + 1;

PD(s=t) = 2lgPC(s=t) < PC(s=t):
(6.2)

By applying Theorem I0(a,b) to (6.1) and (6.2), we see that Theorem

I4 holds with c = sim(D) + 2.

How does the computer D work? First of all, it checks whether the

free data that it has been given is � or t�. These two cases can be

distinguished, for by Theorem I0(c) it is impossible for t� to be equal

to �.

(a) If D has been given the free data �, it enumerates T without

repetitions and simulates the computer determined by the set of

all requirements of the form

f(s; n+ 1) : \PC(s) > 2�n" 2 Tg
= f(s; n+ 1) : PC(s) > 2�ng : (6.3)

Thus (s; n) is taken as a requirement i� n � � lgPC(s)+1. Hence

the number of programs p of length n such that D(p;�) = s is 1

if n � � lgPC(s)+1 and is 0 otherwise, which immediately yields

(6.1).

However, we must check that the requirements (6.3) on D satisfy

the Kraft inequality and are consistent.X
D(p;�)=s

2�jpj = 2lg PC(s) < PC(s):

Hence X
D(p;�) is de�ned

2�jpj <
X
s

PC(s) � 1

by Theorem I0(j). Thus the hypothesis of Theorem I2 is satis-

�ed, the requirements (6.3) indeed determine a computer, and the

proof of (6.1) and Theorem I4(a) is complete.

(b) If D has been given the free data t�, it enumerates Tt without

repetitions and simulates the computer determined by the set of

all requirements of the form

f(s; n+ 1) : \PC(s=t) > 2�n" 2 Ttg
= f(s; n+ 1) : PC(s=t) > 2�ng : (6.4)
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Thus (s; n) is taken as a requirement i� n � � lgPC(s=t) + 1.

Hence the number of programs p of length n such thatD(p; t�) = s

is 1 if n � � lgPC(s=t)+1 and is 0 otherwise, which immediately

yields (6.2).

However, we must check that the requirements (6.4) on D satisfy

the Kraft inequality and are consistent.

X
D(p;t�)=s

2�jpj = 2lg PC(s=t) < PC(s=t):

Hence X
D(p;t�) is de�ned

2�jpj <
X
s

PC(s=t) � 1

by Theorem I0(k). Thus the hypothesis of Theorem I2 is sat-

is�ed, the requirements (6.4) indeed determine a computer, and

the proof of (6.2) and Theorem I4(b) is complete. Q.E.D.

Theorem I5

For each computer C there is a constant c such that

(a)

(
P (s) � 2�cPC(s);

P (s=t) � 2�cPC(s=t):

(b)

(
H(s) = � log2 P (s) +O(1);

H(s=t) = � log2 P (s=t) +O(1):

Proof

Theorem I5(a) follows immediately from Theorem I4 using the fact

that

P (s) � 2�H(s)

and

P (s=t) � 2�H(s=t)

(Theorem I0(l,m)). Theorem I5(b) is obtained by taking C = U in

Theorem I4 and also using these two inequalities. Q.E.D.

Remark

Theorem I4(a) extends Theorem I0(a,b) to probabilities. Note that

Theorem I5(a) is not an immediate consequence of our weak de�nition

of a universal computer.
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Theorem I5(b) enables one to reformulate results about H as re-

sults concerning P , and vice versa; it is the �rst member of a trio of

formulas that will be completed with Theorem I9(e,f). These formulas

are closely analogous to expressions in classical information theory for

the information content of individual events or symbols [Shannon and

Weaver (1949)].

Theorem I6

(There are few minimal programs).

(a) # (fp : U(p;�) = s& jpj � H(s) + ng) � 2n+O(1):

(b) # (fp : U(p; t�) = s& jpj � H(s=t) + ng) � 2n+O(1):

Proof

This follows immediately from Theorem I5(b). Q.E.D.

Theorem I7

P (s) 'X
t

P (s; t):

Proof

On the one hand, there is a computer C such that

C(p;�) = s if U(p;�) = (s; t):

Thus

PC(s) �
X
t

P (s; t):

Using Theorem I5(a), we see that

P (s) � 2�c
X
t

P (s; t):

On the other hand, there is a computer C such that

C(p;�) = (s; s) if U(p;�) = s:

Thus X
t

PC(s; t) � PC(s; s) � P (s):
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Using Theorem I5(a), we see thatX
t

P (s; t) � 2�cP (s):

Q.E.D.

Theorem I8

There is a computer C and a constant c such that

HC(t=s) = H(s; t)�H(s) + c:

Proof

By Theorems I7 and I5(b) there is a c independent of s such that

2H(s)�c
X
t

P (s; t) � 1:

Given the free data s�, C computes s = U(s�;�) and H(s) = js�j, and
then simulates the computer determined by the requirements

f(t; jpj �H(s) + c) : U(p;�) = (s; t)g
Thus for each p such that

U(p;�) = (s; t)

there is a corresponding p0 such that

C(p0; s�) = t

and

jp0j = jpj �H(s) + c:

Hence

HC(t=s) = H(s; t)�H(s) + c:

However, we must check that these requirements satisfy the Kraft in-

equality and are consistent:X
C(p;s�) is de�ned

2�jpj =
X

U(p;�)=(s;t)

2�jpj+H(s)�c

= 2H(s)�c
X
t

P (s; t) � 1

because of the way c was chosen. Thus the hypothesis of Theorem I2 is

satis�ed, and these requirements indeed determine a computer. Q.E.D.

Theorem I9
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(a) H(s; t) = H(s) +H(t=s) +O(1),

(b) H(s : t) = H(s) +H(t)�H(s; t) +O(1),

(c) H(s : t) = H(t : s) +O(1),

(d) P (t=s) ' P (s;t)

P (s)
,

(e) H(t=s) = log2
P (s)

P (s;t)
+O(1),

(f) H(s : t) = log2
P (s;t)

P (s)P (t)
+O(1).

Proof

Theorem I9(a) follows immediately from Theorems I8, I0(b), and

I1(f). Theorem I9(b) follows immediately from Theorem I9(a) and

the de�nition of H(s : t). Theorem I9(c) follows immediately from

Theorems I9(b) and I1(a). Thus the mutual information H(s : t) is the

extent to which it is easier to compute s and t together than to compute

them separately, as well as the extent to which knowing s makes t easier

to compute. Theorem I9(d,e) follow immediately from Theorems I9(a)

and I5(b). Theorem I9(f) follows immediately from Theorems I9(b)

and I5(b). Q.E.D.

Remark

We thus have at our disposal essentially the entire formalism of

information theory. Results such as these can now be obtained e�ort-

lessly:

H(s1) � H(s1=s2) +H(s2=s3) +H(s3=s4) +H(s4) +O(1);

H(s1; s2; s3; s4)

= H(s1=s2; s3; s4) +H(s2=s3; s4) +H(s3=s4) +H(s4) +O(1):

However, there is an interesting class of identities satis�ed by our H

function that has no parallel in classical information theory. The sim-

plest of these is

H(H(s)=s) = O(1)

(Theorem I1(c)), which with Theorem I9(a) immediately yields

H(s;H(s)) = H(s) +O(1):
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In words, \a minimal program tells us its size as well as its output."

This is just one pair of a large family of identities, as we now proceed

to show.

Keeping Theorem I9(a) in mind, consider modifying the computer

C used in the proof of Theorem I1(f) so that it also measures the lengths

H(s) and H(t=s) of its subroutines s� and p, and halts indicating (s, t,

H(s), H(t=s)) to be the result of the computation instead of (s; t). It

follows that

H(s; t) = H(s; t;H(s);H(t=s)) +O(1)

and

H(H(s);H(t=s)=s; t) = O(1):

In fact, it is easy to see that

H(H(s);H(t);H(t=s);H(s=t);H(s; t)=s; t) = O(1);

which implies

H(H(s : t)=s; t) = O(1):

And of course these identities generalize to tuples of three or more

strings.

6.4 Random Strings

In this section we begin studying the notion of randomness or algorith-

mic incompressibility that is associated with the program-size complex-

ity measure H.

Theorem I10

(Bounds on the complexity of positive integers).

(a)
P
n 2

�H(n) � 1.

Consider a computable total function f that carries positive in-

tegers into positive integers.

(b)
P
n 2

�f(n) =1) H(n) > f(n) in�nitely often.

(c)
P
n 2

�f(n) <1) H(n) � f(n) +O(1).
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Proof

(a) By Theorem I0(l,j),

X
n

2�H(n) �X
n

P (n) � 1:

(b) If X
n

2�f(n)

diverges, and

H(n) � f(n)

held for all but �nitely many values of n, then

X
n

2�H(n)

would also diverge. But this would contradict Theorem I10(a),

and thus

H(n) > f(n)

in�nitely often.

(c) If X
n

2�f(n)

converges, there is an n0 such that

X
n�n0

2�f(n) � 1:

Thus the Kraft inequality that Theorem I2 tells us is a necessary

and su�cient condition for the existence a computer C deter-

mined by the requirements

f(n; f(n)) : n � n0g
is satis�ed. It follows that

H(n) � f(n) + sim(C)

for all n � n0. Q.E.D.
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Remark

H(n) can in fact be characterized as a minimal function computable

in the limit from above that lies just on the borderline between the

convergence and the divergence of

X
2�H(n):

Theorem I11

(Maximal complexity �nite bit strings).

(a) maxjsj=nH(s) = n+H(n) +O(1).

(b) # (fs : jsj = n&H(s) � n +H(n)� kg) � 2n�k+O(1).

Proof

Consider a string s of length n. By Theorem I9(a),

H(s) = H(n; s) +O(1) = H(n) +H(s=n) +O(1):

We now obtain Theorem I11(a,b) from this estimate for H(s). There

is a computer C such that

C(p; jpj�) = p

for all p. Thus

H(s=n) � n+ sim(C);

and

H(s) � n+H(n) +O(1):

On the other hand, by Theorem I0(q), fewer than 2n�k of the s satisfy

H(s=n) < n� k:
Hence fewer than 2n�k of the s satisfy

H(s) < n� k +H(n) +O(1):

This concludes the proof of Theorem I11. Q.E.D.

De�nition of Randomness (Finite Case)

In the case of �nite strings, randomness is a matter of degree. To

the question \How random is s?" one must reply indicating how close
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H(s) is to the maximum possible for strings of its size. A string s is

most random if H(s) is approximately equal to jsj+H(jsj). As we shall
see in the next chapter, a good cut-o� to choose between randomness

and non-randomness is H(s) � jsj.
The natural next step is to de�ne an in�nite string to be random if

all its initial segments are �nite random strings. There are several other

possibilities for de�ning random in�nite strings and real numbers, and

we study them at length in Chapter 7. To anticipate, the undecidability

of the halting problem is a fundamental theorem of recursive function

theory. In algorithmic information theory the corresponding theorem

is as follows: The base-two representation of the probability 
 that U

halts is a random (i.e., maximally complex) in�nite string.
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Chapter 7

Randomness

Our goal is to use information-theoretic arguments based on the size of

computer programs to show that randomness, chaos, unpredictability

and uncertainty can occur in mathematics. In this chapter we construct

an equation involving only whole numbers and addition, multiplication

and exponentiation, with the property that if one varies a parameter

and asks whether the number of solutions is �nite or in�nite, the an-

swer to this question is indistinguishable from the result of independent

tosses of a fair coin. In the next chapter, we shall use this to obtain

a number of powerful G�odel incompleteness type results concerning

the limitations of the axiomatic method, in which entropy/information

measures are used.

7.1 Introduction

Following Turing (1937), consider an enumeration r1; r2; r3; : : : of all

computable real numbers between zero and one. We may suppose that

rk is the real number, if any, computed by the kth computer program.

Let :dk1dk2dk3 : : : be the successive digits in the decimal expansion of

rk. Following Cantor, consider the diagonal of the array of rk:

r1 = :d11d12d13 : : :

r2 = :d21d22d23 : : :

r3 = :d31d32d33 : : :

179
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This gives us a new real number with decimal expansion :d11d22d33 : : :.

Now change each of these digits, avoiding the digits zero and nine.

The result is an uncomputable real number, because its �rst digit is

di�erent from the �rst digit of the �rst computable real, its second

digit is di�erent from the second digit of the second computable real,

etc. It is necessary to avoid zero and nine, because real numbers with

di�erent digit sequences can be equal to each other if one of them ends

with an in�nite sequence of zeros and the other ends with an in�nite

sequence of nines, for example, .3999999: : : = .4000000: : : .

Having constructed an uncomputable real number by diagonalizing

over the computable reals, Turing points out that it follows that the

halting problem is unsolvable. In particular, there can be no way of

deciding if the kth computer program ever outputs a kth digit. Be-

cause if there were, one could actually calculate the successive digits

of the uncomputable real number de�ned above, which is impossible.

Turing also notes that a version of G�odel's incompleteness theorem is

an immediate corollary, because if there cannot be an algorithm for

deciding if the kth computer program ever outputs a kth digit, there

also cannot be a formal axiomatic system which would always enable

one to prove which of these possibilities is the case, for in principle one

could run through all possible proofs to decide. As we saw in Chapter

2, using the powerful techniques which were developed in order to solve

Hilbert's tenth problem,1 it is possible to encode the unsolvability of

the halting problem as a statement about an exponential diophantine

equation. An exponential diophantine equation is one of the form

P (x1; : : : ; xm) = P 0(x1; : : : ; xm);

where the variables x1; : : : ; xm range over non-negative integers and

P and P 0 are functions built up from these variables and non-negative

integer constants by the operations of additionA+B, multiplicationA�
B, and exponentiationAB. The result of this encoding is an exponential

diophantine equation P = P 0 in m+ 1 variables n; x1; : : : ; xm with the

property that

P (n; x1; : : : ; xm) = P 0(n; x1; : : : ; xm)

1See Davis, Putnam and Robinson (1961), Davis, Matijasevi�c and Robin-

son (1976), and Jones and Matijasevi�c (1984).
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has a solution in non-negative integers x1; : : : ; xm if and only if the nth

computer program ever outputs an nth digit. It follows that there can

be no algorithm for deciding as a function of n whether or not P = P 0

has a solution, and thus there cannot be any complete proof system for

settling such questions either.

Up to now we have followed Turing's original approach, but now

we will set o� into new territory. Our point of departure is a remark

of Courant and Robbins (1941) that another way of obtaining a

real number that is not on the list r1; r2; r3; : : : is by tossing a coin.

Here is their measure-theoretic argument that the real numbers are

uncountable. Recall that r1; r2; r3; : : : are the computable reals between

zero and one. Cover r1 with an interval of length �=2, cover r2 with an

interval of length �=4, cover r3 with an interval of length �=8, and in

general cover rk with an interval of length �=2k. Thus all computable

reals in the unit interval are covered by this in�nite set of intervals, and

the total length of the covering intervals is

1X
k=1

�

2k
= �:

Hence if we take � su�ciently small, the total length of the covering

is arbitrarily small. In summary, the reals between zero and one con-

stitute an interval of length one, and the subset that are computable

can be covered by intervals whose total length is arbitrarily small. In

other words, the computable reals are a set of measure zero, and if we

choose a real in the unit interval at random, the probability that it is

computable is zero. Thus one way to get an uncomputable real with

probability one is to 
ip a fair coin, using independent tosses to obtain

each bit of the binary expansion of its base-two representation.

If this train of thought is pursued, it leads one to the notion of a

random real number, which can never be a computable real. Follow-

ing Martin-L�of (1966), we give a de�nition of a random real using

constructive measure theory. We say that a set of real numbers X is a

constructive measure zero set if there is an algorithm A which given n

generates a (possibly in�nite) set of intervals whose total length is less

than or equal to 2�n and which covers the set X. More precisely, the
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covering is in the form of a set C of �nite binary strings s such that

X
s2C

2�jsj � 2�n

(here jsj denotes the length of the string s), and each real in the covered
set X has a member of C as the initial part of its base-two expansion.

In other words, we consider sets of real numbers with the property that

there is an algorithm A for producing arbitrarily small coverings of the

set. Such sets of reals are constructively of measure zero. Since there are

only countably many algorithms A for constructively covering measure

zero sets, it follows that almost all real numbers are not contained in

any set of constructive measure zero. Such reals are called (Martin-L�of)

random reals. In fact, if the successive bits of a real number are chosen

by coin 
ipping, with probability one it will not be contained in any set

of constructive measure zero, and hence will be a random real number.

Note that no computable real number r is random. Here is how we

get a constructive covering of arbitrarily small measure. The covering

algorithm, given n, yields the n-bit initial sequence of the binary digits

of r. This covers r and has total length or measure equal to 2�n. Thus

there is an algorithm for obtaining arbitrarily small coverings of the set

consisting of the computable real r, and r is not a random real number.

We leave to the reader the adaptation of the argument in Feller

(1970) proving the strong law of large numbers to show that reals in

which all digits do not have equal limiting frequency have constructive

measure zero.2 It follows that random reals are normal in Borel's sense,

that is, in any base all digits have equal limiting frequency.

Let us consider the real number p whose nth bit in base-two nota-

tion is a zero or a one depending on whether or not the exponential

diophantine equation

P (n; x1; : : : ; xm) = P 0(n; x1; : : : ; xm)

has a solution in non-negative integers x1; : : : ; xm. We will show that p

is not a random real. In fact, we will give an algorithm for producing

coverings of measure (n + 1)2�n, which can obviously be changed to

one for producing coverings of measure not greater than 2�n. Consider

2A self-contained proof is given later. See Theorem R7 in the following section.
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the �rst N values of the parameter n. If one knows for how many of

these values of n, P = P 0 has a solution, then one can �nd for which

values of n < N there are solutions. This is because the set of solutions

of P = P 0 is recursively enumerable, that is, one can try more and

more solutions and eventually �nd each value of the parameter n for

which there is a solution. The only problem is to decide when to give

up further searches because all values of n < N for which there are

solutions have been found. But if one is told how many such n there

are, then one knows when to stop searching for solutions. So one can

assume each of the N+1 possibilities ranging from p has all of its initial

N bits o� to p has all of them on, and each one of these assumptions

determines the actual values of the �rst N bits of p. Thus we have

determined N + 1 di�erent possibilities for the �rst N bits of p, that

is, the real number p is covered by a set of intervals of total length

(N + 1)2�N , and hence is a set of constructive measure zero, and p

cannot be a random real number.

Thus asking whether an exponential diophantine equation has a

solution as a function of a parameter cannot give us a random real

number. However asking whether or not the number of solutions is

in�nite can give us a random real. In particular, there is an exponential

diophantine equation Q = Q0 such that the real number q is random

whose nth bit is a zero or a one depending on whether or not there are

in�nitely many di�erent m-tuples of non-negative integers x1; : : : ; xm
such that

Q(n; x1; : : : ; xm) = Q0(n; x1; : : : ; xm):

The equation P = P 0 that we considered before encoded the halting

problem, that is, the nth bit of the real number p was zero or one

depending on whether the nth computer program ever outputs an nth

digit. To construct an equation Q = Q0 such that q is random, we

use instead the halting probability 
 of a universal Turing machine;

Q = Q0 has �nitely or in�nitely many solutions depending on whether

the nth bit of the base-two expansion of the halting probability 
 is a

zero or a one.

Q = Q0 is quite a remarkable equation, as it shows that there is a

kind of uncertainty principle even in pure mathematics, in fact, even

in the theory of whole numbers. Whether or not Q = Q0 has in�nitely
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many solutions jumps around in a completely unpredictable manner as

the parameter n varies. It may be said that the truth or falsity of the

assertion that there are in�nitely many solutions is indistinguishable

from the result of independent tosses of a fair coin. In other words, these

are independent mathematical facts with probability one-half! This is

where our search for a probabilistic proof of Turing's theorem that

there are uncomputable real numbers leads us, to a dramatic version

of G�odel's incompleteness theorem.

7.2 Random Reals

We have seen (Theorem I11) that the most complex n-bit strings x

have H(x) = n+H(n) +O(1), and that the number of n-bit strings is

halved each time the complexity is reduced by one bit. I.e., there are

less than

2n�k+O(1)

n-bit strings x with H(x) � n + H(n) � k. With �nite bit strings

randomness is a question of degree. What is the right place to draw

the cut-o� between random and non-random for an n-bit string x?

Somewhere around H(x) = n. Thus minimal programs are right on the

boundary, for if U(p) = s and jpj = H(s), then it is easy to see that

H(p) = jpj +O(1).

There are two reasons for choosing this cut-o�. One is that it per-

mits us to still say that a string is random if any program for calculating

it is larger (within O(1)) than it is. The other reason, is that it permits

us to de�ne an in�nite random bit string as one having the property

that all its initial segments are �nite random bit strings.

Now we show that this complexity-based de�nition of an in�nite

random string is equivalent to a de�nition of randomness that seems

to have nothing to do with complexity, Martin-L�of's de�nition of a

random real number using constructive measure theory. To do this, we

shall make use of another measure-theoretic de�nition of randomness

due to Solovay, which has the advantage that it does not require a

regulator of convergence.

The advantage of this approach is demonstrated by Theorem R7,

which asserts that any total recursive scheme for predicting the next bit
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of an in�nite random string from the preceding ones, must fail about

half the time. Previously we could only prove this to be the case if

(the number of bits predicted among the �rst n) / log n ! 1; now

this works as long as in�nitely many predictions are made. So by going

from considering the size of LISP expressions to considering the size

of self-delimiting programs in a rather abstract programming language,

we lose the concreteness of the familiar, but we gain extremely sharp

theorems.

De�nition [Martin-L�of (1966)]

Speaking geometrically, a real r is Martin-L�of random if it is never

the case that it is contained in each set of an r.e. in�nite sequence Ai

of sets of intervals with the property that the measure3 of the ith set

is always less than or equal to 2�i:

�(Ai) � 2�i: (7.1)

Here is the de�nition of a Martin-L�of random real r in a more compact

notation:

8i
h
�(Ai) � 2�i

i
) :8i [r 2 Ai] :

An equivalent de�nition, if we restrict ourselves to reals in the unit

interval 0 � r � 1, may be formulated in terms of bit strings rather

than geometrical notions, as follows. De�ne a covering to be an r.e. set

of ordered pairs consisting of a positive integer i and a bit string s,

Covering = f(i; s)g;
with the property that if (i; s) 2 Covering and (i; s0) 2 Covering, then

it is not the case that s is an extension of s0 or that s0 is an extension

of s.4 We simultaneously consider Ai to be a set of (�nite) bit strings

fs : (i; s) 2 Coveringg
3I.e., the sum of the lengths of the intervals, being careful to avoid counting

overlapping intervals twice.
4This is to avoid overlapping intervals and enable us to use the formula (7.2). It

is easy to convert a covering which does not have this property into one that covers

exactly the same set and does have this property. How this is done depends on the

order in which overlaps are discovered: intervals which are subsets of ones which

have already been included in the enumeration of Ai are eliminated, and intervals

which are supersets of ones which have already been included in the enumeration

must be split into disjoint subintervals, and the common portion must be thrown

away.
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and to be a set of real numbers, namely those which in base-two nota-

tion have a bit string in Ai as an initial segment.5 Then condition (7.1)

becomes

�(Ai) =
X

(i;s)2Covering

2�jsj � 2�i; (7.2)

where jsj = the length in bits of the string s.

Note

This is equivalent to stipulating the existence of an arbitrary \reg-

ulator of convergence" f ! 1 that is computable and nondecreasing

such that

�(Ai) � 2�f(i):

De�nition [Solovay (1975)]

A real r is Solovay random if for any r.e. in�nite sequence Ai of sets

of intervals with the property that the sum of the measures of the Ai

converges X
�(Ai) <1;

r is contained in at most �nitely many of the Ai. In other words,

X
�(Ai) <1) 9N8(i > N) [r 62 Ai] :

De�nition [Chaitin (1975b)]

A real r is weakly Chaitin random if (the information content of the

initial segment rn of length n of the base-two expansion of r) does not

drop arbitrarily far below n: lim infH(rn)� n > �1. In other words,

9c8n [H(rn) � n � c]

A real r is Chaitin random if (the information content of the initial seg-

ment rn of length n of the base-two expansion of r) eventually becomes

and remains arbitrarily greater than n: limH(rn) � n = 1. In other

words,

8k9Nk8(n � Nk) [H(rn) � n+ k]

Note

5I.e., the geometrical statement that a point is covered by (the union of) a set of

intervals, corresponds in bit string language to the statement that an initial segment

of an in�nite bit string is contained in a set of �nite bit strings.
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All these de�nitions hold with probability one (see Theorem R5

below).

Theorem R1 [Schnorr (1974)]

Martin-L�of random , weakly Chaitin random.

Proof :Martin-L�of ) :(weak Chaitin)

Suppose that a real number r has the property that

8i
h
�(Ai) � 2�i& r 2 Ai

i
:

The series

X
2n=2n

2

=
X

2�n
2+n = 2�0 + 2�0 + 2�2 + 2�6 + 2�12 + 2�20 + � � �

obviously converges, and de�ne N so that:

X
n�N

2�n
2+n � 1:

(In fact, we can take N = 2.) Let the variable s range over bit strings,

and consider the following inequality:

X
n�N

X
s2A

n2

2�[jsj�n] =
X
n�N

2n�(An2) �
X
n�N

2�n
2+n � 1:

Thus the requirements

f(s; jsj � n) : s 2 An2 &n � Ng

for constructing a computer C such that

HC(s) = jsj � n if s 2 An2 &n � N

satisfy the Kraft inequality and are consistent (Theorem I2). It follows

that

s 2 An2 &n � N ) H(s) � jsj � n+ sim(C):

Thus, since r 2 An2 for all n � N , there will be in�nitely many initial

segments rk of length k of the base-two expansion of r with the property

that rk 2 An2 and n � N , and for each of these rk we have

H(rk) � jrkj � n+ sim(C):
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Thus the information content of an initial segment of the base-two

expansion of r can drop arbitrarily far below its length.

Proof :(weak Chaitin) ) :Martin-L�of

Suppose that H(rn)� n can go arbitrarily negative. There are less

than

2n�k+c

n-bit strings s such that H(s) < n+H(n)�k. Thus there are less than
2n�H(n)�k

n-bit strings s such that H(s) < n� k� c. I.e., the probability that an
n-bit string s has H(s) < n� k � c is less than

2�H(n)�k:

Summing this over all n, we getX
n

2�H(n)�k = 2�k
X
n

2�H(n) � 2�k
 � 2�k;

since 
 � 1. Thus if a real r has the property that H(rn) dips below

n� k� c for even one value of n, then r is covered by an r.e. set Ak of

intervals with �(Ak) � 2�k. Thus if H(rn)�n goes arbitrarily negative,
for each k we can compute an Ak with �(Ak) � 2�k and r 2 Ak, and r

is not Martin-L�of random. Q.E.D.

Theorem R2 [Solovay (1975)]

Martin-L�of random , Solovay random.

Proof :Martin-L�of ) :Solovay
We are given that 8i [r 2 Ai] and 8i [�(Ai) � 2�i]. ThusX

�(Ai) �
X

2�i <1:
Hence

P
�(Ai) converges and r is in in�nitely many of the Ai and

cannot be Solovay random.

Proof :Solovay ) :Martin-L�of

Suppose X
�(Ai) � 2c

and the real number r is in in�nitely many of the Ai. Let

Bn =
n
x : x is in at least 2n+c of the Ai

o
:
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Then �(Bn) � 2�n and r 2 Bn for all n, so r is not Martin-L�of random.

Q.E.D.

Theorem R3

Solovay random , Chaitin random.

Proof :Solovay ) :Chaitin
Suppose that a real number r has the property that it is in in�nitely

many Ai, and X
�(Ai) <1:

Then there must be an N such thatX
i�N

�(Ai) � 1:

Hence X
i�N

X
s2Ai

2�jsj =
X
i�N

�(Ai) � 1:

Thus the requirements

f(s; jsj) : s 2 Ai& i � Ng
for constructing a computer C such that

HC(s) = jsj if s 2 Ai& i � N

satisfy the Kraft inequality and are consistent (Theorem I2). It follows

that

s 2 Ai& i � N ) H(s) � jsj+ sim(C);

i.e., if a bit string s is in Ai and i is greater than or equal to N , then

s's information content is less than or equal to its size in bits +sim(C).

Thus

H(rn) � jrnj+ sim(C) = n+ sim(C)

for in�nitely many initial segments rn of length n of the base-two ex-

pansion of r, and it is not the case that H(rn)� n!1.

Proof :Chaitin ) :Solovay
:Chaitin says that there is a k such that for in�nitely many values

of n we have H(rn)�n < k. The probability that an n-bit string s has

H(s) < n+ k is less than

2�H(n)+k+c:
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Let An be the r.e. set of all n-bit strings s such that H(s) < n+ k.

X
�(An) �

X
n

2�H(n)+k+c = 2k+c
X

2�H(n) � 2k+c
 � 2k+c;

since 
 � 1. Hence
P
�(An) < 1 and r is in in�nitely many of the

An, and thus r is not Solovay random. Q.E.D.

Theorem R4

A real number is Martin-L�of random , it is Solovay random , it

is Chaitin random , it is weakly Chaitin random.

Proof

The equivalence of all four de�nitions of a random real number

follows immediately from Theorems R1, R2, and R3. Q.E.D.

Note

That weak Chaitin randomness is coextensive with Chaitin random-

ness, reveals a complexity gap. I.e., we have shown that ifH(rn) > n�c
for all n, necessarily H(rn)� n!1.

Theorem R5

With probability one, a real number r is Martin-L�of/Solovay/

Chaitin random.

Proof 1

Since Solovay randomness ) Martin-L�of and Chaitin randomness,

it is su�cient to show that r is Solovay random with probability one.

Suppose X
�(Ai) <1;

where the Ai are an r.e. in�nite sequence of sets of intervals. Then (this

is the Borel{Cantelli lemma [Feller (1970)])

lim
N!1

�(
[
i�N

Ai) � lim
N!1

X
i�N

�(Ai) = 0

and the probability is zero that a real r is in in�nitely many of the Ai.

But there are only countably many choices for the r.e. sequence of Ai,

since there are only countably many algorithms. Since the union of a

countable number of sets of measure zero is also of measure zero, it

follows that with probability one r is Solovay random.

Proof 2
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We use the Borel{Cantelli lemma again. This time we show that the

Chaitin criterion for randomness, which is equivalent to the Martin-L�of

and Solovay criteria, is true with probability one. Since for each k,X
n

�(fr : H(rn) < n+ kg) � 2k+c

and thus converges,6 it follows that for each k with probability one

H(rn) < n+ k only �nitely often. Thus, with probability one,

lim
n!1

H(rn)� n =1:
Q.E.D.

Theorem R6


 is a Martin-L�of/Solovay/Chaitin random real number.7

Proof

It is easy to see that 
 can be computed as a limit from below. We

gave a LISP program for doing this at the end of Chapter 5. Indeed,

fp : U(p;�) is de�nedg � fp1; p2; p3; : : :g
is a recursively enumerable set. Let

!n �
X
k�n

2�jpk j:

Then !n < !n+1 ! 
.

It follows that given 
n, the �rst n bits of the non-terminating base-

two expansion of the real number 
,8 one can calculate all programs of

size not greater than n that halt, then the �nite set of all S-expressions

x such that H(x) � n, and �nally an S-expression x with H(x) > n.

For compute !k for k = 1; 2; 3; : : : until !k is greater than 
n. Then


n < !k � 
 � 
n + 2�n;

6See the second half of the proof of Theorem R3.
7Incidentally, this implies that 
 is not a computable real number. Since alge-

braic numbers are computable, it follows that 
 must be transcendental.
8I.e., if there is a choice between ending the base-two expansion of 
 with in�-

nitely many consecutive zeros or with in�nitely many consecutive ones (i.e., if 
 is a

dyadic rational), then we must choose the in�nity of consecutive ones. Of course, it

will follow from this theorem that 
 must be an irrational number, so this situation

cannot actually occur, but we don't know that yet!
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so that all objects with complexityH less than or equal to n are in the

set

fU(pi;�) : i � kg ;
and one can calculate this set and then pick an arbitrary object that

isn't in it.

Thus there is a computable partial function  such that

 (
n) = an S-expression x with H(x) > n:

But

H( (
n)) � H(
n) + c :

Hence

n < H( (
n)) � H(
n) + c ;

and

H(
n) > n� c :
Thus 
 is weakly Chaitin random, and by Theorem R4 it is Martin-

L�of/Solovay/Chaitin random. Q.E.D.

Note

More generally, if X is an in�nite r.e. set of S-expressions, then

X
x2X

2�H(x)

and X
x2X

P (x)

are both Martin-L�of/Solovay/Chaitin random reals.

Theorem R7


 is unpredictable. More precisely, consider a total recursive pre-

diction function F , which given an arbitrary �nite initial segment of an

in�nite bit string, returns either \no prediction", \the next bit is a 0",

or \the next bit is a 1". Then if F predicts in�nitely many bits of 
, it

does no better than chance, because in the limit the relative frequency

of correct and incorrect predictions both tend to 1
2
.

Proof Sketch
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Consider the set An of all in�nite bit strings for which F makes at

least n predictions and the number of correct predictions k among the

�rst n made satis�es �����12 �
k

n

����� > �:

We shall show that

�(An) � n(1� �)int[�n=2]:

Here int[x] is the integer part of the real number x. Thus

X
�(An)

essentially converges like a geometric series with ratio less than one.

Since 
 satis�es the Solovay randomness criterion, it follows that 
 is

in at most �nitely many of the An. I.e., if F predicts in�nitely many

bits of 
, then, for any � > 0, from some point on the number of correct

predictions k among the �rst n made satis�es

�����12 �
k

n

����� � �;

which was to be proved.

It remains to establish the upper bound on �(An). This follows

from the following upper bound on binomial coe�cients:

 
n

k

!
� n

1

n� 1

2

n� 2

3
� � � n� k + 1

k
� 2n(1� �)int[�n=2]

if �����12 �
k

n

����� > �:

To prove this, note that the binomial coe�cients \n choose k" sum to

2n, and that the coe�cients start small, grow until the middle, and

then decrease as k increases beyond n=2. Thus the coe�cients that

we are interested in are obtained by taking the large middle binomial

coe�cient, which is less than 2n, and multiplying it by at least �n

fractions, each of which is less than unity. In fact, at least �n=2 of the
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fractions that the largest binomial coe�cient is multiplied by are less

than 1� �. Q.E.D.
Note

Consider an F that always predicts that the next bit of 
 is a 1.

Applying Theorem R7, we see that 
 has the property that 0's and

1's both have limiting relative frequency 1
2
. Next consider an F that

predicts that each 0 bit in 
 is followed by a 1 bit. In the limit this

prediction will be right half the time and wrong half the time. Thus 0

bits are followed by 0 bits half the time, and by 1 bits half the time. It

follows by induction that each of the 2k possible blocks of k bits in 


has limiting relative frequency 2�k. Thus, to use Borel's terminology,


 is \normal" in base two.

The question of how quickly relative frequencies approach their lim-

iting values is studied carefully in probability theory [Feller (1970)];

the answer is known as \the law of the iterated logarithm." The law

of the iterated logarithm also applies to the relative frequency of cor-

rect and incorrect predictions of bits of 
. For Feller's proof of the

law of the iterated logarithm depends only on the �rst Borel{Cantelli

lemma, which is merely the Martin-L�of/Solovay randomness property

of 
, and on the second Borel{Cantelli lemma, which we shall show

that 
 satis�es in Section 8.3.

Theorem R8

There is an exponential diophantine equation

L(n; x1; : : : ; xm) = R(n; x1; : : : ; xm)

which has only �nitely many solutions x1; : : : ; xm if the nth bit of 
 is

a 0, and which has in�nitely many solutions x1; : : : ; xm if the nth bit of


 is a 1. I.e., this equation involves only addition A+B, multiplication

A � B, and exponentiation AB of non-negative integer constants and

variables, the number of di�erent m-tuples x1; : : : ; xm of non-negative

integers which are solutions of this equation is in�nite if the nth bit

of the base-two representation of 
 is a 1, and the number of di�erent

m-tuples x1; : : : ; xm of non-negative integers which are solutions of this

equation is �nite if the nth bit of the base-two representation of 
 is a

0.

Proof
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By combining the de�nitions of the functions W and O that were

given in Section 5.4, one obtains a LISP de�nition of a function ' of

two variables such that '(n; k) is unde�ned for all su�ciently large

values of k if the nth bit of 
 is a 0, and '(n; k) is de�ned for all

su�ciently large values of k if the nth bit of 
 is a 1. I.e., the de�nition

of '(n; k) loops forever for all su�ciently large values of k if the nth bit

of 
 is a 0, and the de�nition of '(n; k) terminates for all su�ciently

large values of k if the nth bit of 
 is a 1.

Now let's plug the LISP expression for '(n; k) into the variable

input.EXPRESSION in that 900,000-character exponential diophan-

tine equation that is a LISP interpreter that we went to so much

trouble to construct in Part I. I.e., we substitute for the variable in-

put.EXPRESSION the 8-bit-per-character binary representation (with

the characters in reverse order) of an S-expression of the form

( (0(&(nk):::)) (0(11:::11)) (0(11:::11)) ) (7.3)

where there are n 1's in the �rst list of 1's and k 1's in the second list of

1's. The resulting equation will have a solution in non-negative integers

if and only if '(n; k) is de�ned, and for given n and k it can have at

most one solution.

We are almost at our goal; we need only point out that the binary

representation of the S-expression (7.3) can be written in closed form

as an algebraic function of n and k that only uses +;�;�, and expo-

nentiation. This is easy to see; the essential step is that the binary

representation of a character string consisting only of 1's is just the

sum of a geometric series with multiplier 256. Then, proceeding as in

Chapter 2, we eliminate the minus signs and express the fact that s is

the binary representation of the S-expression (7.3) with given n and k

by means of a few exponential diophantine equations. Finally we fold

this handful of equations into the left-hand side and the right-hand side

of our LISP interpreter equation, using the same \sum of squares" trick

that we did in Chapter 2.

The result is that our equation has gotten a little bigger, and that

the variable input.EXPRESSION has been replaced by three new vari-

ables s, n and k and a few new auxiliary variables. This new monster

equation has a solution if and only if '(n; k) is de�ned, and for given n
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and k it can have at most one solution. Recall that '(n; k) is de�ned

for all su�ciently large values of k if and only if the nth bit of the base-

two representation of 
 is a 1. Thus our new equation has in�nitely

many solutions for a given value of n if the nth bit of 
 is a 1, and it

has �nitely many solutions for a given value of n if the nth bit of 
 is

a 0. Q.E.D.



Chapter 8

Incompleteness

Having developed the necessary information-theoretic formalism in

Chapter 6, and having studied the notion of a random real in Chapter

7, we can now begin to derive incompleteness theorems.

The setup is as follows. The axioms of a formal theory are consid-

ered to be encoded as a single �nite bit string, the rules of inference

are considered to be an algorithm for enumerating the theorems given

the axioms, and in general we shall �x the rules of inference and vary

the axioms. More formally, the rules of inference F may be considered

to be an r.e. set of propositions of the form

\Axioms`FTheorem":

The r.e. set of theorems deduced from the axiom A is determined by

selecting from the set F the theorems in those propositions which have

the axiom A as an antecedent. In general we'll consider the rules of

inference F to be �xed and study what happens as we vary the axioms

A. By an n-bit theory we shall mean the set of theorems deduced from

an n-bit axiom.

8.1 Incompleteness Theorems for Lower

Bounds on Information Content

Let's start by rederiving within our current formalism an old and very

basic result, which states that even though most strings are random,

197
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one can never prove that a speci�c string has this property.

As we saw when we studied randomness, if one produces a bit string

s by tossing a coin n times, 99.9% of the time it will be the case that

H(s) � n+H(n). In fact, if one lets n go to in�nity, with probability

one H(s) > n for all but �nitely many n (Theorem R5). However,

Theorem LB [Chaitin (1974a,1974b,1975a,1982b)]

Consider a formal theory all of whose theorems are assumed to be

true. Within such a formal theory a speci�c string cannot be proven to

have information content more than O(1) greater than the information

content of the axioms of the theory. I.e., if \H(s) � n" is a theorem

only if it is true, then it is a theorem only if n � H(axioms) + O(1).

Conversely, there are formal theories whose axioms have information

content n+O(1) in which it is possible to establish all true propositions

of the form \H(s) � n" and of the form \H(s) = k" with k < n.

Proof

The idea is that if one could prove that a string has no distinguish-

ing feature, then that itself would be a distinguishing property. This

paradox can be restated as follows: There are no uninteresting numbers

(positive integers), because if there were, the �rst uninteresting number

would ipso facto be interesting! Alternatively, consider \the smallest

positive integer that cannot be speci�ed in less than a thousand words."

We have just speci�ed it using only fourteen words.

Consider the enumeration of the theorems of the formal axiomatic

theory in order of the size of their proofs. For each positive integer

k, let s� be the string in the theorem of the form \H(s) � n" with

n > H(axioms)+k which appears �rst in the enumeration. On the one

hand, if all theorems are true, then

H(axioms) + k < H(s�):

On the other hand, the above prescription for calculating s� shows that

s� =  (axioms;H(axioms); k) ( partial recursive);

and thus
H(s�) � H(axioms;H(axioms); k) + c 

� H(axioms) +H(k) +O(1):
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Here we have used the subadditivity of information H(s; t) � H(s) +

H(t) + O(1) and the fact that H(s;H(s)) � H(s) + O(1). It follows

that

H(axioms) + k < H(s�) � H(axioms) +H(k) +O(1);

and thus

k < H(k) +O(1):

However, this inequality is false for all k � k0, where k0 depends only

on the rules of inference. A contradiction is avoided only if s� does not

exist for k = k0, i.e., it is impossible to prove in the formal theory that

a speci�c string has H greater than H(axioms) + k0.

Proof of Converse

The set T of all true propositions of the form \H(s) � k" is re-

cursively enumerable. Choose a �xed enumeration of T without repe-

titions, and for each positive integer n, let s� be the string in the last

proposition of the form \H(s) � k" with k < n in the enumeration.

Let

� = n�H(s�) > 0:

Then from s�, H(s�), and � we can calculate n = H(s�) + �, then all

strings s with H(s) < n, and then a string sn with H(sn) � n. Thus

n � H(sn) = H( (s�;H(s�);�)) ( partial recursive);

and so

n � H(s�;H(s�);�) + c � H(s�) +H(�) +O(1)

� n+H(�) +O(1)
(8.1)

using the subadditivity of joint information and the fact that a program

tells us its size as well as its output. The �rst line of (8.1) implies that

� � n�H(s�) � H(�) +O(1);

which implies that � and H(�) are both bounded. Then the second

line of (8.1) implies that

H(s�;H(s�);�) = n+O(1):
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The triple (s�;H(s�);�) is the desired axiom: it has information con-

tent n+O(1), and by enumerating T until all true propositions of the

form \H(s) � k" with k < n have been discovered, one can immedi-

ately deduce all true propositions of the form \H(s) � n" and of the

form \H(s) = k" with k < n. Q.E.D.

Note

Here are two other ways to establish the converse, two axioms that

solve the halting problem for all programs of size � n:

(1) Consider the program p of size � n that takes longest to halt. It

is easy to see that H(p) = n+O(1).

(2) Consider the number hn of programs of size� n that halt. Solovay
has shown1 that

hn = 2n�H(n)+O(1);

from which it is easy to show that H(hn) = n+O(1).

Restating Theorem LB in terms of the halting problem, we have shown

that if a theory has information content n, then there is a program of

size � n+O(1) that never halts, but this fact cannot be proved within

the theory. Conversely, there are theories with information content

n+O(1) that enable one to settle the halting problem for all programs

of size � n.

8.2 Incompleteness Theorems for Ran-

dom Reals: First Approach

In this section we begin our study of incompleteness theorems for ran-

dom reals. We show that any particular formal theory can enable one

to determine at most a �nite number of bits of 
. In the following

sections (8.3 and 8.4) we express the upper bound on the number of

bits of 
 which can be determined, in terms of the axioms of the the-

ory; for now, we just show that an upper bound exists. We shall not

use any ideas from algorithmic information theory until Section 8.4;

1For a proof of Solovay's result, see Theorem 8 [Chaitin (1976c)].
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for now (Sections 8.2 and 8.3) we only make use of the fact that 
 is

Martin-L�of random.

If one tries to guess the bits of a random sequence, the average

number of correct guesses before failing is exactly 1 guess! Reason: if

we use the fact that the expected value of a sum is equal to the sum

of the expected values, the answer is the sum of the chance of getting

the �rst guess right, plus the chance of getting the �rst and the second

guesses right, plus the chance of getting the �rst, second and third

guesses right, et cetera:

1

2
+
1

4
+
1

8
+

1

16
+ � � � = 1:

Or if we directly calculate the expected value as the sum of (the number

right till �rst failure) � (the probability):

0 � 1

2
+ 1� 1

4
+ 2� 1

8
+ 3 � 1

16
+ 4 � 1

32
+ � � �

= 1 �
X
k>1

2�k + 1 �
X
k>2

2�k + 1 �
X
k>3

2�k + � � �

=
1

2
+
1

4
+
1

8
+ � � � = 1:

On the other hand (see the next section), if we are allowed to try 2n

times a series of n guesses, one of them will always get it right, if we

try all 2n di�erent possible series of n guesses.

Theorem X

Any given formal theory T can yield only �nitely many (scattered)

bits of (the base-two expansion of) 
. When we say that a theory yields

a bit of 
, we mean that it enables us to determine its position and its

0/1 value.

Proof

Consider a theory T , an r.e. set of true assertions of the form

\The nth bit of 
 is 0."

\The nth bit of 
 is 1."
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Here n denotes speci�c positive integers.

If T provides k di�erent (scattered) bits of 
, then that gives us

a covering Ak of measure 2�k which includes 
: Enumerate T until

k bits of 
 are determined, then the covering is all bit strings up to

the last determined bit with all determined bits okay. If n is the last

determined bit, this covering will consist of 2n�k n-bit strings, and will

have measure 2n�k=2n = 2�k.

It follows that if T yields in�nitely many di�erent bits of 
, then

for any k we can produce by running through all possible proofs in T a

covering Ak of measure 2�k which includes 
. But this contradicts the

fact that 
 is Martin-L�of random. Hence T yields only �nitely many

bits of 
. Q.E.D.

Corollary X

Since by Theorem R8 
 can be encoded into an exponential dio-

phantine equation

L(n; x1; : : : ; xm) = R(n; x1; : : : ; xm); (8.2)

it follows that any given formal theory can permit one to determine

whether (8.2) has �nitely or in�nitely many solutions x1; : : : ; xm, for

only �nitely many speci�c values of the parameter n.

8.3 Incompleteness Theorems for Ran-

dom Reals: jAxiomsj

Theorem A

If X
2�f(n) � 1

and f is computable, then there is a constant cf with the property that

no n-bit theory ever yields more than n+ f(n) + cf bits of 
.

Proof

Let Ak be the event that there is at least one n such that there is

an n-bit theory that yields n+ f(n) + k or more bits of 
.

�(Ak) �
X
n

2
64
0
B@

2n

n-bit

theories

1
CA
0
B@

2�[n+f(n)+k]

probability that yields

n+ f(n) + k bits of 


1
CA
3
75
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= 2�k
X
n

2�f(n) � 2�k

since X
2�f(n) � 1:

Hence �(Ak) � 2�k , and
P
�(Ak) also converges. Thus only �nitely

many of the Ak occur (Borel{Cantelli lemma [Feller (1970)]). I.e.,

lim
N!1

�(
[
k>N

Ak) �
X
k>N

�(Ak) � 2�N ! 0:

More detailed proof

Assume the opposite of what we want to prove, namely that for

every k there is at least one n-bit theory that yields n+ f(n) + k bits

of 
. From this we shall deduce that 
 cannot be Martin-L�of random,

which is impossible.

To get a covering Ak of 
 with measure � 2�k, consider a speci�c n

and all n-bit theories. Start generating theorems in each n-bit theory

until it yields n+ f(n) + k bits of 
 (it doesn't matter if some of these

bits are wrong). The measure of the set of possibilities for 
 covered

by the n-bit theories is thus

� 2n2�n�f(n)�k = 2�f(n)�k:

The measure �(Ak) of the union of the set of possibilities for 
 covered

by n-bit theories with any n is thus

�X
n

2�f(n)�k = 2�k
X
n

2�f(n) � 2�k (since
P
2�f(n) � 1):

Thus 
 is covered by Ak and �(Ak) � 2�k for every k if there is always

an n-bit theory that yields n+ f(n) + k bits of 
, which is impossible.

Q.E.D.

Corollary A

If X
2�f(n)

converges and f is computable, then there is a constant cf with the

property that no n-bit theory ever yields more than n+ f(n) + cf bits

of 
.
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Proof

Choose c so that X
2�f(n) � 2c:

Then X
2�[f(n)+c] � 1;

and we can apply Theorem A to f 0(n) = f(n) + c. Q.E.D.

Corollary A2

Let X
2�f(n)

converge and f be computable as before. If g(n) is computable, then

there is a constant cf;g with the property that no g(n)-bit theory ever

yields more than g(n) + f(n) + cf;g bits of 
. E.g., consider N of the

form

22
n

:

For suchN , no N -bit theory ever yields more than N+f(log logN)+cf;g
bits of 
.

Note

Thus for n of special form, i.e., which have concise descriptions, we

get better upper bounds on the number of bits of 
 which are yielded

by n-bit theories. This is a foretaste of the way algorithmic information

theory will be used in Theorem C and Corollary C2 (Section 8.4).

Lemma for Second Borel{Cantelli Lemma!

For any �nite set fxkg of non-negative real numbers,
Y
(1� xk) � 1P

xk
:

Proof

If x is a real number, then

1 � x � 1

1 + x
:

Thus Y
(1 � xk) � 1Q

(1 + xk)
� 1P

xk
;
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since if all the xk are non-negative

Y
(1 + xk) �

X
xk:

Q.E.D.

Second Borel{Cantelli Lemma [Feller (1970)]

Suppose that the events An have the property that it is possible to

determine whether or not the event An occurs by examining the �rst

f(n) bits of 
, where f is a computable function. If the events An are

mutually independent and
P
�(An) diverges, then 
 has the property

that in�nitely many of the An must occur.

Proof

Suppose on the contrary that 
 has the property that only �nitely

many of the events An occur. Then there is an N such that the event

An does not occur if n � N . The probability that none of the events

AN ; AN+1; : : : ; AN+k occur is, since the An are mutually independent,

precisely
kY
i=0

(1� �(AN+i)) � 1hP
k

i=0 �(AN+i)
i ;

which goes to zero as k goes to in�nity. This would give us arbitrarily

small covers for 
, which contradicts the fact that 
 is Martin-L�of

random. Q.E.D.

Theorem B

If X
2n�f(n)

diverges and f is computable, then in�nitely often there is a run of f(n)

zeros between bits 2n and 2n+1 of 
 (2n � bit < 2n+1). Hence there

are rules of inference which have the property that there are in�nitely

many N -bit theories that yield (the �rst) N + f(logN) bits of 
.

Proof

We wish to prove that in�nitely often 
 must have a run of k = f(n)

consecutive zeros between its 2nth and its 2n+1th bit position. There

are 2n bits in the range in question. Divide this into non-overlapping

blocks of 2k bits each, giving a total of int[2n=2k] blocks, where int[x]

denotes the integer part of the real number x. The chance of having a
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run of k consecutive zeros in each block of 2k bits is

� k2k�2

22k
: (8.3)

Reason:

(1) There are 2k � k + 1 � k di�erent possible choices for where to

put the run of k zeros in the block of 2k bits.

(2) Then there must be a 1 at each end of the run of 0's, but the

remaining 2k � k � 2 = k � 2 bits can be anything.

(3) This may be an underestimate if the run of 0's is at the beginning

or end of the 2k bits, and there is no room for endmarker 1's.

(4) There is no room for another 10k1 to �t in the block of 2k bits, so

we are not overestimating the probability by counting anything

twice.

If 2k is a power of two, then int[2n=2k] = 2n=2k. If not, there is

a power of two that is � 4k and divides 2n exactly. In either case,

int[2n=2k] � 2n=4k. Summing (8.3) over all int[2n=2k] � 2n=4k blocks

and over all n, we get

�X
n

"
k2k�2

22k
2n

4k

#
=

1

16

X
n

2n�k =
1

16

X
2n�f(n) =1:

Invoking the second Borel{Cantelli lemma (if the eventsAi are indepen-

dent and
P
�(Ai) diverges, then in�nitely many of the Ai must occur),

we are �nished. Q.E.D.

Corollary B

If X
2�f(n)

diverges and f is computable and nondecreasing, then in�nitely often

there is a run of f(2n+1) zeros between bits 2n and 2n+1 of 
 (2n �
bit < 2n+1). Hence there are in�nitely many N -bit theories that yield

(the �rst) N + f(N) bits of 
.

Proof
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Recall the Cauchy condensation test [Hardy (1952)]: if �(n) is a

nonincreasing function of n, then the series
P
�(n) is convergent or

divergent according as
P
2n�(2n) is convergent or divergent. Proof:

X
�(k) �Xh

�(2n + 1) + � � �+ �(2n+1)
i
�X 2n�(2n+1)

=
1

2

X
2n+1�(2n+1):

On the other hand,

X
�(k) �Xh

�(2n) + � � �+ �(2n+1 � 1)
i
�X 2n�(2n):

If X
2�f(n)

diverges and f is computable and nondecreasing, then by the Cauchy

condensation test X
2n2�f(2

n)

also diverges, and therefore so does

X
2n2�f(2

n+1):

Hence, by Theorem B, in�nitely often there is a run of f(2n+1) zeros

between bits 2n and 2n+1. Q.E.D.

Corollary B2

If X
2�f(n)

diverges and f is computable, then in�nitely often there is a run of

n + f(n) zeros between bits 2n and 2n+1 of 
 (2n � bit < 2n+1).

Hence there are in�nitely many N -bit theories that yield (the �rst)

N + logN + f(logN) bits of 
.

Proof

Take f(n) = n+ f 0(n) in Theorem B. Q.E.D.

Theorem AB

First a piece of notation. By log x we mean the integer part of the

base-two logarithm of x. I.e., if 2n � x < 2n+1, then log x = n.
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(a) There is a c with the property that no n-bit theory ever yields

more than

n+ log n + log log n+ 2 log log log n+ c

(scattered) bits of 
.

(b) There are in�nitely many n-bit theories that yield (the �rst)

n+ log n+ log log n+ log log log n

bits of 
.

Proof

Using the Cauchy condensation test, we shall show below that

(a)
P 1

n logn(log logn)2
<1,

(b)
P 1

n logn log logn
=1.

The theorem follows immediately from Corollaries A and B.

Now to use the condensation test:

X 1

n2

behaves the same as X
2n

1

22n
=
X 1

2n
;

which converges. X 1

n(log n)2

behaves the same as X
2n

1

2nn2
=
X 1

n2
;

which converges. And

X 1

n log n(log log n)2



8.4. RANDOM REALS: H(AXIOMS) 209

behaves the same as

X
2n

1

2nn(log n)2
=
X 1

n(log n)2
;

which converges.

On the other hand, X 1

n

behaves the same as X
2n

1

2n
=
X

1;

which diverges. X 1

n log n

behaves the same as X
2n

1

2nn
=
X 1

n
;

which diverges. And X 1

n log n log log n

behaves the same as

X
2n

1

2nn log n
=
X 1

n log n
;

which diverges. Q.E.D.

8.4 Incompleteness Theorems for Ran-

dom Reals: H(Axioms)

Theorem C is a remarkable extension of Theorem R6:

(1) We have seen that the information content of knowing the �rst n

bits of 
 is � n� c.
(2) Now we show that the information content of knowing any n bits

of 
 (their positions and 0/1 values) is � n� c.
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Lemma C

X
n

#fs : H(s) < ng2�n � 1:

Proof

1 � 
 �X
s

2�H(s)

=
X
n

#fs : H(s) = ng2�n =X
n

#fs : H(s) = ng2�nX
k�1

2�k

=
X
n

X
k�1

#fs : H(s) = ng2�n�k =X
n

#fs : H(s) < ng2�n:

Q.E.D.

Theorem C

If a theory has H(axiom) < n, then it can yield at most n + c

(scattered) bits of 
.

Proof

Consider a particular k and n. If there is an axiomwithH(axiom) <

n which yields n + k scattered bits of 
, then even without knowing

which axiom it is, we can cover 
 with an r.e. set of intervals of measure

�
0
B@

#fs : H(s) < ng
# of axioms

with H < n

1
CA
0
B@

2�n�k

measure of set of

possibilities for 


1
CA

= #fs : H(s) < ng2�n�k :
But by the preceding lemma, we see that

X
n

#fs : H(s) < ng2�n�k = 2�k
X
n

#fs : H(s) < ng2�n � 2�k:

Thus if even one theory with H < n yields n+k bits of 
, for any n, we

get a cover for 
 of measure � 2�k. This can only be true for �nitely

many values of k, or 
 would not be Martin-L�of random. Q.E.D.

Corollary C

No n-bit theory ever yields more than n+H(n) + c bits of 
.

Proof
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This follows immediately from Theorem C and the fact that

H(axiom) � jaxiomj+H(jaxiomj) + c;

which is an immediate consequence of Theorem I11(a). Q.E.D.

Lemma C2

If g(n) is computable and unbounded, then H(n) < g(n) for in�-

nitely many values of n.

Proof

De�ne the inverse of g as follows:

g�1(n) = min
g(k)�n

k:

Then it is easy to see that for all su�ciently large values of n:

H(g�1(n)) � H(n) +O(1) � O(log n) < n � g(g�1(n)):
I.e., H(k) < g(k) for all k = g�1(n) and n su�ciently large. Q.E.D.

Corollary C2

Let g(n) be computable and unbounded. For in�nitely many n, no

n-bit theory yields more than n+ g(n) + c bits of 
.

Proof

This is an immediate consequence of Corollary C and Lemma C2.

Q.E.D.

Note

In appraising Corollaries C and C2, the trivial formal systems in

which there is always an n-bit axiom that yields the �rst n bits of


 should be kept in mind. Also, compare Corollaries C and A, and

Corollaries C2 and A2.

In summary,

Theorem D

There is an exponential diophantine equation

L(n; x1; : : : ; xm) = R(n; x1; : : : ; xm) (8.4)

which has only �nitely many solutions x1; : : : ; xm if the nth bit of 
 is

a 0, and which has in�nitely many solutions x1; : : : ; xm if the nth bit of


 is a 1. Let us say that a formal theory \settles k cases" if it enables

one to prove that the number of solutions of (8.4) is �nite or that it

is in�nite for k speci�c values (possibly scattered) of the parameter n.

Let f(n) and g(n) be computable functions.
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(a)
P
2�f(n) <1) all n-bit theories settle � n+f(n)+O(1) cases.

(b)
P
2�f(n) =1 & f(n) � f(n + 1) ) for in�nitely many n, there

is an n-bit theory that settles � n+ f(n) cases.

(c) H(theory) < n ) it settles � n+O(1) cases.

(d) n-bit theory ) it settles � n+H(n) +O(1) cases.

(e) g unbounded ) for in�nitely many n, all n-bit theories settle

� n+ g(n) +O(1) cases.

Proof

The theorem combines Theorem R8, Corollaries A and B, Theorem

C, and Corollaries C and C2. Q.E.D.



Chapter 9

Conclusion

In conclusion, we see that proving whether particular exponential dio-

phantine equations have �nitely or in�nitely many solutions, is ab-

solutely intractable (Theorem D). Such questions escape the power of

mathematical reasoning. This is a region in which mathematical truth

has no discernible structure or pattern and appears to be completely

random. These questions are completely beyond the power of human

reasoning. Mathematics cannot deal with them.

Nonlinear dynamics [Ford (1983) and Jensen (1987)] and quan-

tum mechanics have shown that there is randomness in nature. I be-

lieve that we have demonstrated in this book that randomness is al-

ready present in pure mathematics, in fact, even in rather elementary

branches of number theory. This doesn't mean that the universe and

mathematics are lawless, it means that sometimes laws of a di�erent

kind apply: statistical laws.

More generally, this tends to support what Tymoczko (1986) has

called a \quasi-empirical" approach to the foundations of mathematics.

To quote from Chaitin (1982b), where I have argued this case at

length, \Perhaps number theory should be pursued more openly in the

spirit of experimental science!" To prove more, one must sometimes

assume more.

I would like to end with a few speculations on the deep problem of

the origin of biological complexity, the question of why living organisms
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are so complicated, and in what sense we can understand them.1 I.e.,

how do biological \laws" compare with the laws of physics?2

We have seen that 
 is about as random, patternless, unpredictable

and incomprehensible as possible; the pattern of its bit sequence de-

�es understanding. However with computations in the limit, which is

equivalent to having an oracle for the halting problem,3 
 seems quite

understandable: it becomes a computable sequence. Biological evolu-

tion is the nearest thing to an in�nite computation in the limit that we

will ever see: it is a computation with molecular components that has

proceeded for 109 years in parallel over the entire surface of the earth.

That amount of computing could easily produce a good approximation

to 
, except that that is not the goal of biological evolution. The goal

of evolution is survival, for example, keeping viruses such as those that

cause AIDS from subverting one's molecular mechanisms for their own

purposes.

This suggests to me a very crude evolutionary model based on the

game of matching pennies, in which players use computable strategies

for predicting their opponent's next play from the previous ones.4 I

don't think it would be too di�cult to formulate this more precisely

and to show that prediction strategies will tend to increase in program-

size complexity with time.

Perhaps biological structures are simple and easy to understand only

if one has an oracle for the halting problem.

1Compare my previous thoughts on theoretical biology, Chaitin (1970b) and

Chaitin (1979). There I suggest that mutual information H(s : t) can be used to

pick out the highly correlated regions of space that contain organisms. This view is

static; here we are concerned with the dynamics of the situation. Incidentally, it is

possible to also regard these papers as an extremely abstract discussion of musical

structure and metrics between compositional styles.
2In Chaitin (1985) I examine the complexity of physical laws by actually pro-

gramming them, and the programs turn out to be amazingly small. I use APL

instead of LISP.
3See Chaitin (1977a,1976c).
4See the discussion of matching pennies in Chaitin (1969a).



Chapter 10

Bibliography

The author's papers on algorithmic information theory are collected in

the book Chaitin (1987c).

� H. Abelson, G.J. Sussman, and J. Sussman (1985), Struc-

ture and Interpretation of Computer Programs, Cambridge,

Mass.: MIT Press.

� G.J. Chaitin (1966), \On the length of programs for computing

�nite binary sequences," Journal of the ACM 13, pp. 547{569.

� G.J. Chaitin (1969a), \On the length of programs for computing

�nite binary sequences: statistical considerations," Journal of the

ACM 16, pp. 145{159.

� G.J. Chaitin (1969b), \On the simplicity and speed of programs

for computing in�nite sets of natural numbers," Journal of the

ACM 16, pp. 407{422.

� G.J. Chaitin (1970a), \On the di�culty of computations,"

IEEE Transactions on Information Theory 16, pp. 5{9.

� G.J. Chaitin (1970b), \To a mathematical de�nition of `life',"

ACM SICACT News 4, pp. 12{18.

� G.J. Chaitin (1974a), \Information-theoretic computational

complexity," IEEE Transactions on Information Theory 20, pp.

10{15. Reprinted in Tymoczko (1986).

215



216 CHAPTER 10. BIBLIOGRAPHY

� G.J. Chaitin (1974b), \Information-theoretic limitations of for-

mal systems," Journal of the ACM 21, pp. 403{424.

� G.J. Chaitin (1975a), \Randomness and mathematical proof,"

Scienti�c American 232 (5), pp. 47{52. Also published in the

French, Japanese, and Italian editions of Scienti�c American.

� G.J. Chaitin (1975b), \A theory of program size formally iden-

tical to information theory," Journal of the ACM 22, pp. 329{340.

� G.J. Chaitin (1976a), \A toy version of the LISP language,"

Report RC 5924, Yorktown Heights: IBM Watson Research Cen-

ter.

� G.J. Chaitin (1976b), \Information-theoretic characterizations

of recursive in�nite strings," Theoretical Computer Science 2, pp.

45{48.

� G.J. Chaitin (1976c), \Algorithmic entropy of sets," Computers

& Mathematics with Applications 2, pp. 233{245.

� G.J. Chaitin (1977a), \Program size, oracles, and the jump

operation," Osaka Journal of Mathematics 14, pp. 139{149.

� G.J. Chaitin (1977b), \Algorithmic information theory," IBM

Journal of Research and Development 21, pp. 350{359, 496.

� G.J. Chaitin and J.T. Schwartz (1978), \A note on Monte

Carlo primality tests and algorithmic information theory," Com-

munications on Pure and Applied Mathematics 31, pp. 521{527.

� G.J. Chaitin (1979), \Toward a mathematical de�nition of

`life'," in R.D. Levine and M. Tribus (1979), The Maximum

Entropy Formalism, Cambridge, Mass.: MIT Press, pp. 477{498.

� G.J. Chaitin (1982a), \Algorithmic information theory," in En-

cyclopedia of Statistical Sciences I, New York: Wiley, pp. 38{41.

� G.J. Chaitin (1982b), \G�odel's theorem and information,"

International Journal of Theoretical Physics 22, pp. 941{954.

Reprinted in Tymoczko (1986).



217

� G.J. Chaitin (1985), \An APL2 gallery of mathematical

physics|a course outline," Proceedings Japan 85 APL Sympo-

sium, Publication N:GE18-9948-0, IBM Japan, pp. 1{56.

� G.J. Chaitin (1986), \Randomness and G�odel's theorem,"Mon-

des en D�eveloppement 14 (54{55), pp. 125{128, 356.

� G.J. Chaitin (1987a), \Computing the busy beaver function,"

in T.M. Cover and B. Gopinath (1987), Open Problems in

Communication and Computation, New York: Springer, pp. 108{

112.

� G.J. Chaitin (1987b), \Incompleteness theorems for random

reals," Advances in Applied Mathematics 8, pp. 119{146.

� G.J. Chaitin (1987c), Information, Randomness & Incomplete-

ness | Papers on Algorithmic Information Theory, Singapore:

World Scienti�c.

� J.H. Conway (1986), private communication.

� R. Courant and H. Robbins (1941), What is Mathematics?,

Oxford: Oxford University Press.

� M.F. Cowlishaw (1985), The REXX Language, Englewood

Cli�s, NJ: Prentice-Hall.

� M. Davis, H. Putnam and J. Robinson (1961), \The deci-

sion problem for exponential diophantine equations," Annals of

Mathematics 74, pp. 425{436.

� M. Davis (1965), The Undecidable|Basic Papers on Undecid-

able Propositions, Unsolvable Problems and Computable Func-

tions, Hewlett: Raven Press.

� M. Davis, Y.V. Matijasevi�c and J. Robinson (1976),

\Hilbert's tenth problem. Diophantine equations: positive as-

pects of a negative solution," inMathematical Developments Aris-

ing from Hilbert Problems, Providence: American Mathematical

Society, pp. 323{378.



218 CHAPTER 10. BIBLIOGRAPHY

� M. Davis (1978), \What is a computation?," in L.A. Steen

(1978), Mathematics Today, New York: Springer, pp. 241{267.

� S. Feferman et al. (1986), Kurt G�odel: Collected Works I: Pub-

lications 1929-1936, New York: Oxford University Press.

� W. Feller (1970), An Introduction to Probability Theory and

Its Applications I, New York: Wiley.

� J. Ford (1983), \How random is a coin toss?," Physics Today

36 (4), pp. 40{47.

� K. G�odel (1931), \On formally undecidable propositions of

Principia mathematica and related systems I," Monatshefte f�ur

Mathematik und Physik 38, pp. 173{198. Reprinted in Fefer-

man (1986).

� G.H. Hardy (1952), A Course of Pure Mathematics, Cambridge:

Cambridge University Press.

� R.V. Jensen (1987), \Classical chaos," American Scientist 75,

pp. 168{181.

� J.P. Jones et al. (1976), \Diophantine representation of the set

of prime numbers," American Mathematical Monthly 83, pp. 449{

464.

� J.P. Jones and Y.V. Matijasevi�c (1984), \Register machine

proof of the theorem on exponential diophantine representation

of enumerable sets," Journal of Symbolic Logic 49, pp. 818{829.

� M. Levin (1974), \Mathematical Logic for Computer Scientists,"

Report TR-131, Cambridge, Mass.: MIT Project MAC.

� B.B. Mandelbrot (1982), The Fractal Geometry of Nature,

San Francisco: Freeman.

� P. Martin-L�of (1966), \The de�nition of random sequences,"

Information and Control 9, pp. 602{619.



219

� J. McCarthy (1960), \Recursive functions of symbolic expres-

sions and their computation by machine I," ACM Communica-

tions 3, pp. 184{195.

� J. McCarthy et al. (1962), LISP 1.5 Programmer's Manual,

Cambridge, Mass.: MIT Press.

� J. McCarthy (1981), \History of LISP," in R.L. Wexelblat

(1981), History of Programming Languages, New York: Academic

Press, pp. 173{197, 710{713.

� R.P. O'Hara and D.R. Gomberg (1985), Modern Program-

ming Using REXX, Englewood Cli�s, NJ: Prentice-Hall.

� G. P�olya (1954), Induction and Analogy in Mathematics,

Princeton, NJ: Princeton University Press.

� J. Rissanen (1986), \Stochastic complexity and modeling," An-

nals of Statistics 14, pp. 1080{1100.

� R. Rucker (1987), Mind Tools, Boston: Houghton Mi�in.

� C.P. Schnorr (1974), private communication.

� C.E. Shannon and W. Weaver (1949), The Mathematical

Theory of Communication, Urbana: University of Illinois Press.

� R.M. Solovay (1975), private communication.

� A.M. Turing (1937), \On computable numbers, with an appli-

cation to the Entscheidungsproblem," Proceedings London Math-

ematical Society 42, pp. 230{265. Reprinted in Davis (1965).

� T. Tymoczko (1986), New Directions in the Philosophy of Math-

ematics, Boston: Birkh�auser.

� J.C. Webb (1980), Mechanism, Mentalism, and Metamathemat-

ics, Dordrecht: Reidel.

� P.H. Winston and B.K.P. Horn (1984), LISP, Reading,

Mass.: Addison-Wesley.



220 CHAPTER 10. BIBLIOGRAPHY



Appendix A

Implementation Notes

The programs in this book were run under the VM/CMS time-sharing

system on a large IBM 370 mainframe, a 3090 processor. A virtual

machine with 4 megabytes of storage was used.

The compiler for converting register machine programs into expo-

nential diophantine equations is a 700-line1 REXX program. REXX is

a very nice and easy to use pattern-matching string processing language

implemented by means of a very e�cient interpreter.2

There are three implementations of our version of pure LISP:

(1) The �rst is in REXX, and is 350 lines of code. This is the sim-

plest implementation of the LISP interpreter, and it serves as an

\executable design document."

(2) The second is on a simulated register machine. This imple-

mentation consists of a 250-line REXX driver that converts M-

expressions into S-expressions, remembers function de�nitions,

and does most input and output formating, and a 1000-line 370

Assembler H expression evaluator. The REXX driver wraps each

expression in a lambda expression which binds all current de�n-

itions, and then hands it to the assembler expression evaluator.

The 1000 lines of assembler code includes the register machine

simulator, many macro de�nitions, and the LISP interpreter in

1Including comments and blank lines.
2See Cowlishaw (1985) and O'Hara and Gomberg (1985).
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register machine language. This is the slowest of the three imple-

mentations; its goals are theoretical, but it is fast enough to test

and debug.

(3) The third LISP implementation, like the previous one, has a 250-

line REXX driver; the real work is done by a 700-line 370 As-

sembler H expression evaluator. This is the high-performance

evaluator, and it is amazingly small: less than 8K bytes of 370

machine language code, tables, and bu�ers, plus a megabyte of

storage for the stack, and two megabytes for the heap, so that

there is another megabyte left over for the REXX driver. It gets

by without a garbage collector: since all information that must

be preserved from one evaluation to another (mostly function de-

�nitions) is in the form of REXX character strings, the expression

evaluator can be reinitialized after each evaluation. Another rea-

son for the simplicity and speed of this interpreter is that our

version of pure LISP is \permissive;" error checking and the pro-

duction of diagnostic messages are usually a substantial portion

of an interpreter.

All the REXX programs referred to above need to know the set of

valid LISP characters, and this information is parameterized as a small

128-character �le.

An extensive suite of tests has been run through all three LISP

implementations, to ensure that the three interpreters produce identical

results.

This software is available from the author on request.



Appendix B

The Number of S-expressions

of Size N

In this appendix we prove the results concerning the number of S-

expressions of a given size that were used in Chapter 5 to show that

there are few minimal LISP programs and other results. We have post-

poned the combinatorial and analytic arguments to here, in order not

to interrupt our discussion of program size with material of a rather dif-

ferent mathematical nature. However, the estimates we obtain here of

the number of syntactically correct LISP programs of a given size, are

absolutely fundamental to a discussion of the basic program-size char-

acteristics of LISP. And if we were to discuss another programming

language, estimates of the number of di�erent possible programs and

outputs of a given size would also be necessary. In fact, in my �rst paper

on program-size complexity [Chaitin (1966)], I go through an equiv-

alent discussion of the number of di�erent Turing machine programs

with n-states and m-tape symbols, but using quite di�erent methods.

Let us start by stating more precisely what we are studying, and by

looking at some examples. Let � be the number of di�erent characters

in the alphabet used to form S-expressions, not including the left and

right parentheses. In other words, � is the number of atoms, excluding

the empty list. In fact � = 126, but let's proceed more generally. We

shall study Sn, the number of di�erent S-expressions n characters long

that can be formed from these � atoms by grouping them together with

parentheses. The only restriction that we need to take into account is
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that left and right parentheses must balance for the �rst time precisely

at the end of the expression. Our task is easier than in normal LISP

because we ignore blanks and all atoms are exactly one character long,

and also because NIL and () are not synonyms.

Here are some examples. S0 = 0, since there are no zero-character

S-expressions. S1 = �, since each atom by itself is an S-expression.

S2 = 1, because the empty list () is two characters. S3 = � again:

(a)

S4 = �2 + 1:

(aa)

(())

S5 = �3 + 3�:

(aaa)

(a())

(()a)

((a))

S6 = �4 + 6�2 + 2:

(aaaa)

(aa())

(a()a)

(a(a))

(()aa)

(()())

((a)a)

((aa))

((()))

S7 = �5 + 10�3 + 10�:

(aaaaa)

(aaa())

(aa()a)

(aa(a))
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(a()aa)

(a()())

(a(a)a)

(a(aa))

(a(()))

(()aaa)

(()a())

(()()a)

(()(a))

((a)aa)

((a)())

((aa)a)

((())a)

((aaa))

((a()))

((()a))

(((a)))

Our main result is that Sn=Sn�1 tends to the limit � + 2. More

precisely, the following asymptotic estimate holds:

Sn � 1

2
p
�
k�1:5(� + 2)n�2 where k � n

� + 2
:

In other words, it is almost, but not quite, the case that each character

in an n-character S-expression can independently be an atom or a left

or right parenthesis, which would give Sn = (�+2)n. The di�erence, a

factor of (�+2)�2k�1:5=2
p
�, is the extent to which the syntax of LISP

S-expressions limits the multiplicative growth of possibilities. We shall

also show that for n � 3 the ratio Sn=Sn�1 is never less than � and is

never greater than (� + 2)2. In fact, numerical computer experiments

suggest that this ratio increases from � to its limiting value �+2. Thus

it is perhaps the case that � � Sn=Sn�1 � �+ 2 for all n � 3.

Another important fact about Sn is that one will always eventu-

ally obtain a syntactically valid S-expression by successively choosing

characters at random, unless one has the bad luck to start with a right

parenthesis. Here it is understood that successive characters are chosen

independently with equal probabilities from the set of �+2 possibilities
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until an S-expression is obtained. This will either happen immediately

if the �rst character is not a left parenthesis, or it will happen as soon

as the number of right parentheses equals the number of left paren-

theses. This is equivalent to the well-known fact that with probability

one a symmetrical random walk in one dimension will eventually re-

turn to the origin [Feller (1970)]. Stated in terms of Sn instead of in

probabilistic terminology, we have shown that

1X
n=0

Sn(�+ 2)�n = 1� 1

� + 2
:

Moreover, it follows from the asymptotic estimate for Sn that this in�-

nite series converges as
P
n�1:5.

In fact, the asymptotic estimate for Sn stated above is derived by

using the well-known fact that the probability that the �rst return to

the origin in a symmetrical random walk in one dimension occurs at

epoch 2n is precisely

1

2n� 1

 
2n

n

!
2�2n � 1

2n
p
�n

:

This is equivalent to the assertion that if � = 0, i.e., we are forming

S-expressions only out of parentheses, then

S2n =
1

2

1

2n � 1

 
2n

n

!
� 1

4n
p
�n

22n:

For we are choosing exactly half of the random walks, i.e., those that

start with a left parenthesis not a right parenthesis.

Accepting this estimate for the moment (we shall give a proof later)

[or see Feller (1970)], we now derive the asymptotic estimate for

Sn for unrestricted �. To obtain an arbitrary n-character S-expression,

�rst decide the number 2k (0 � 2k � n) of parentheses that it contains.

Then choose which of the n characters will be parentheses and which

will be one of the � atoms. There are n � 2 choose 2k � 2 ways of

doing this, because the �rst and the last characters must always be a

left and a right parenthesis, respectively. There remain �n�2k choices

for the characters that are not parentheses, and one-half the number of
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ways a random walk can return to the origin for the �rst time at epoch

2k ways to choose the parentheses. The total number of n-character

S-expressions is therefore

X
0�2k�n

�n�2k
 
n� 2

2k � 2

!"
1

2

1

2k � 1

 
2k

k

!#
:

This is approximately equal to

X
0�2k�n

 
n

2k

!"
2k

n

#2
�n�2k22k

"
1

4
p
�k1:5

#
:

To estimate this sum, compare it with the binomial expansion of (�+

2)n. Note �rst of all that we only have every other term. The e�ect

of this is to divide the sum in half, since the di�erence between the

two sums, the even terms and the odd ones, is (� � 2)n. I.e., for

large n the binomial coe�cients approach a smooth gaussian curve,

and therefore don't vary much from one term to the next. Also, since

we are approaching a gaussian bell-shaped curve, most of the sum is

contributed by terms of the binomial a few standard deviations around

the mean.1 In other words, we can expect there to be about twice

k =
n

�+ 2
+O(

p
n)

parentheses in the n characters. The correction factor between the

exact sum and our estimate is essentially constant for k in this range.

And this factor is the product of (2k=n)2 to �x the binomial coe�cient,

which is asymptotic to 4=(� + 2)2, and k�1:5=4
p
� due to the random

walk of parentheses. Thus our estimate for Sn is essentially every other

term, i.e., one-half, of the binomial expansion for (� + 2)n multiplied

by this correction factor:

1

2
(�+ 2)n

4

(� + 2)2
1

4
p
�k1:5

with k = n=(� + 2). I.e.,

Sn � (�+ 2)n�2

2
p
�k1:5

;

1Look at the ratios of successive terms [see Feller (1970) for details].
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which was to be proved.

Now we turn from asymptotic estimates to exact formulas for Sn,

via recurrences.

Consider an n-character S-expression. The head of the S-expression

can be an arbitrary (n � k)-character S-expression and its tail can be

an arbitrary k-character S-expression, where k, the size of the tail, goes

from 2 to n� 1. There are Sn�kSk ways this can happen. Summing all

the possibilities, we get the following recurrence for Sn:

S0 = 0;

S1 = �;

S2 = 1;

Sn =
P
n�1
k=2 Sn�kSk (n � 3):

(B.1)

Thus Sn � �Sn�1 for n � 3, since one term in the sum for Sn is

S1Sn�1 = �Sn�1.

To proceed, we use the method of generating functions.2 Note that

each of the n characters in an n-character S-expression can be one of

the � atoms or a left or right parenthesis, at most � + 2 possibilities

raised to the power n:

Sn � (�+ 2)n:

This upper bound shows that the following generating function for Sn
is absolutely convergent in a neighborhood of the origin

F (x) �
1X
n=0

Snx
n

�
jxj < 1

�+ 2

�
:

The recurrence (B.1) for Sn and its boundary conditions can then be

reformulated in terms of the generating function as follows:

F (x) = F (x)2 � �xF (x) + �x+ x2:

I.e.,

F (x)2 + [��x� 1]F (x) +
h
�x+ x2

i
= 0:

2For some of the history of this method, and its use on a related problem, see

\A combinatorial problem in plane geometry," Exercises 7{9, Chapter VI, p. 102,

P�olya (1954).
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We now replace the above (n� 2)-term recurrence for Sn by a two-

term recurrence.3

The �rst step is to eliminate the annoying middle term by com-

pleting the square. We replace the original generating function F by a

new generating function whose coe�cients are the same for all terms

of degree 2 or higher:

G(x) � F (x) + 1

2
(��x� 1) :

With this modi�ed generating function, we have

G(x)2 = F (x)2 + [��x� 1]F (x) + 1
4
[��x� 1]

2

= ��x� x2 + 1
4
[��x� 1]

2 � P (x);

where we introduce the notation P for the second degree polynomial

on the right-hand side of this equation. I.e.,

G(x)2 = P (x):

Di�erentiating with respect to x, we obtain

2G(x)G0(x) = P 0(x):

Multiplying both sides by G(x),

2G(x)2G0(x) = P 0(x)G(x);

and thus

2P (x)G0(x) = P 0(x)G(x);

from which we now derive a recurrence for calculating Sn from Sn�1
and Sn�2, instead of needing all previous values.

We have

G(x)2 = P (x);

that is,

G(x)2 = ��x� x2 + 1

4
[��x� 1]

2
:

3I am grateful to my colleague Victor Miller for suggesting the method we use

to do this.
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Expanding the square,

P (x) = ��x� x2 + 1

4

h
�2x2 + 2�x+ 1

i
:

Collecting terms,

P (x) =

�
1

4
�2 � 1

�
x2 � �

2
x+

1

4
:

Di�erentiating,

P 0(x) =

�
1

2
�2 � 2

�
x�

�
�

2

�
:

We have seen that

2P (x)
X

(n+ 1)Sn+1x
n = P 0(x)

X
Snx

n;

where it is understood that the low order terms of the sums have been

\modi�ed." Substituting in P (x) and P 0(x), and multiplying through

by 2, we obtainh
(�2 � 4)x2 � 2�x+ 1

iX
(n + 1)Sn+1x

n =
h
(�2 � 4)x� �

iX
Snx

n:

I.e., P
[(�2 � 4)(n� 1)Sn�1 � 2�nSn + (n + 1)Sn+1]x

n

=
P
[(�2 � 4)Sn�1 � �Sn]xn:

We have thus obtained the following remarkable recurrence for n � 3:

nSn = �
h
(�2 � 4)(n� 3)

i
Sn�2 + [2�(n � 1) � �] Sn�1: (B.2)

If exact rather than asymptotic values of Sn are desired, this is an

excellent technique for calculating them.

We now derive Sn � (� + 2)2Sn�1 from this recurrence. For n � 4

we have, since we know that Sn�1 is greater than or equal to Sn�2,

Sn �
h
(�2 + 4) + (2� + �)

i
Sn�1 �

h
(�+ 2)2

i
Sn�1:

In the special case that � = 0, one of the terms of recurrence (B.2)

drops out, and we have

Sn = 4
n � 3

n
Sn�2:
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From this it can be shown by induction that

S2n =
1

2

1

2n � 1

 
2n

n

!
=

1

2

1

2n� 1

(2n)!

n!n!
;

which with Stirling's formula [see Feller (1970)]

n! �
p
2�nn+

1

2 e�n

yields the asymptotic estimate we used before. For

S2n =
1

2

1

2n� 1

(2n)!

n!n!
� 1

4n

p
2�(2n)2n+

1

2 e�2nhp
2�nn+

1

2 e�n
i2 =

1

4n

22np
�n

:

For large n recurrence (B.2) is essentially

(�2 � 4)Sn�2 � 2�Sn�1 + Sn = 0 (n very large): (B.3)

Recurrences such as (B.3) are well known. See, for example, the dis-

cussion of \Recurring series," and \Solution of di�erence equations,"

Exercises 15{16, Chapter VIII, pp. 392{393, Hardy (1952). The lim-

iting ratio Sn=Sn�1 ! � must satisfy the following equation:

(�2 � 4) � 2�x + x2 = 0:

This quadratic equation factors nicely:

(x� (�+ 2)) (x� (�� 2)) = 0:

Thus the two roots � are:

�1 = � � 2;

�2 = � + 2:

The larger root �2 agrees with our previous asymptotic estimate for

Sn=Sn�1.
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Appendix C

Back Cover

� G.J. Chaitin, the inventor of algorithmic information theory,

presents in this book the strongest possible version of G�odel's

incompleteness theorem, using an information theoretic approach

based on the size of computer programs.

An exponential diophantine equation is explicitly constructed

with the property that certain assertions are independent mathe-

matical facts, that is, irreducible mathematical information that

cannot be compressed into any �nite set of axioms.

This is the �rst book on this subject and will be of interest to

computer scientists, mathematicians, physicists and philosophers

interested in the nature of randomness and in the limitations of

the axiomatic method.

� \Gregory Chaitin: : :has proved the ultimate in undecidability

theorems: : : , that the logical structure of arithmetic can be

random: : : The assumption that the formal structure of arith-

metic is precise and regular turns out to have been a time-bomb,

and Chaitin has just pushed the detonator." Ian Stewart in Na-

ture

� \No one, but no one, is exploring to greater depths the amaz-

ing insights and theorems that 
ow from G�odel's work on un-

decidability than Gregory Chaitin. His exciting discoveries and

speculations invade such areas as logic, induction, simplicity, the
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philosophy of mathematics and science, randomness, proof the-

ory, chaos, information theory, computer complexity, diophantine

analysis, and even the origin and evolution of life. If you haven't

yet encountered his brilliant, clear, creative, wide-ranging mind,

this is the book to read and absorb." Martin Gardner


